请问函数的驻点和极值点的区别
1个回答
展开全部
函数的驻点:函数导数为0的点称为函数的驻点;
函数的极值点:是在这点附近这一点所对应的函数值最大或者最小(注意是这个点附近).
存在极值点的情况有两类,一类是一阶导数为零的点(也就是我们所说的驻点),另一类是一阶导数不存在的点.
但是,这两类并不都是极值点,比如说y=x^3在x=0的时候起一阶导数为零,但不是极值点.
所以,驻点可能是极值点,极值点可能是驻点.
还有,可导函数f(x)的极值点【必定】是它的驻点.
函数的极值点:是在这点附近这一点所对应的函数值最大或者最小(注意是这个点附近).
存在极值点的情况有两类,一类是一阶导数为零的点(也就是我们所说的驻点),另一类是一阶导数不存在的点.
但是,这两类并不都是极值点,比如说y=x^3在x=0的时候起一阶导数为零,但不是极值点.
所以,驻点可能是极值点,极值点可能是驻点.
还有,可导函数f(x)的极值点【必定】是它的驻点.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询