x²-5x-6=0 怎么用因式分解法!!!详过程求求了!!
4个回答
展开全部
解:方程为x²-5x-6=0,化为x²+(-5)x+(-6)=0,
x²+(-6+1)x+(-6)×1=0,[x+(-6)](x+1)=0,(x-6)(x+1)=0,得:x=6或-1
含有未知量的等式就是方程了,数学最先发展于计数,而关于数和未知数之间通过加、减、乘、除和幂等运算组合,形成代数方程:一元一次方程,一元二次方程、二元一次方程等等。然而,随着函数概念的出现,以及基于函数的微分、积分运算的引入,使得方程的范畴更广泛,未知量可以是函数、向量等数学对象,运算也不再局限于加减乘除。
方程在数学中占有重要的地位,似乎是数学永恒的话题。方程的出现不仅极大扩充了数学应用的范围,使得许多算术解题法不能解决的问题能够得以解决,而且对后来整个数学的进展产生巨大的影响。特别是数学中的许多重大发现都与它密切相关。
中学阶段接触到方程基本都在这个范畴,方程中的未知数,可以出现在方程中的分式、整式、根式以及三角函数、指数函数等初等函数的自变量中。
在中学阶段遇到方程求解问题,一般地,可将方程转换为整式方程;一般都是转换为一元二次方程,或者多元一次方程组的求解问题。
自从数学从常量数学转变为变量数学,方程的内容也随之丰富,因为数学引入了更多的概念,更多的运算,从而形成了更多的方程。其他自然科学,尤其物理学的发展也直接提出了方程解决的需求,提供了大量的研究课题。
x²+(-6+1)x+(-6)×1=0,[x+(-6)](x+1)=0,(x-6)(x+1)=0,得:x=6或-1
含有未知量的等式就是方程了,数学最先发展于计数,而关于数和未知数之间通过加、减、乘、除和幂等运算组合,形成代数方程:一元一次方程,一元二次方程、二元一次方程等等。然而,随着函数概念的出现,以及基于函数的微分、积分运算的引入,使得方程的范畴更广泛,未知量可以是函数、向量等数学对象,运算也不再局限于加减乘除。
方程在数学中占有重要的地位,似乎是数学永恒的话题。方程的出现不仅极大扩充了数学应用的范围,使得许多算术解题法不能解决的问题能够得以解决,而且对后来整个数学的进展产生巨大的影响。特别是数学中的许多重大发现都与它密切相关。
中学阶段接触到方程基本都在这个范畴,方程中的未知数,可以出现在方程中的分式、整式、根式以及三角函数、指数函数等初等函数的自变量中。
在中学阶段遇到方程求解问题,一般地,可将方程转换为整式方程;一般都是转换为一元二次方程,或者多元一次方程组的求解问题。
自从数学从常量数学转变为变量数学,方程的内容也随之丰富,因为数学引入了更多的概念,更多的运算,从而形成了更多的方程。其他自然科学,尤其物理学的发展也直接提出了方程解决的需求,提供了大量的研究课题。
2022-09-09
展开全部
x²-5x-6=0 怎么用因式分解法!!!
x²-5x-6=(x-6)(x+1)=0
x₁ = 6 , x₂ = -1
x²-5x-6=(x-6)(x+1)=0
x₁ = 6 , x₂ = -1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
把-6分解成1x(-6),十字相乘法,(x+1)(x-6)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x² - 5x - 6 = 0
(x - 6)(x + 1) = 0
x₁ = 6 , x₂ = -1
(x - 6)(x + 1) = 0
x₁ = 6 , x₂ = -1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询