证明:矩阵A不可逆,则伴随矩阵行列式为0

 我来答
机器1718
2022-07-04 · TA获得超过6833个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:160万
展开全部
首先如果A=O,很容易看出A*=O,自然有|A*|=0.下面假设A≠O,A不可逆可知|A|=0,由于AA*=|A|E,因此AA*=O(0矩阵).这里要用到矩阵乘积为O的一个结论:如果AB=O,则r(A)+r(B)≤n.因此r(A)+r(A*)≤n,由A≠O知r(A)≥1,因此r(A*)≤n-1,即A*不是满秩的,因此|A*|=0.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式