求f(x)=cos2x+1在区间[π/6,2π/3]的最大值和最小值 区间是六分之派到三分之二派
2个回答
展开全部
f(x) = 1+cos2x, f'(x) = -2sin2x, 在 [π/6,2π/3] 内,得唯一驻点 x =π/2
f(π/6) = 1+cos(π/3) = 3/2, f(π/2) = 1+cosπ = 0,
f(2π/3) = 1+cos(4π/3) = 1 - √2/2.
f(x) = 1+cos2x, 在 [π/6,2π/3] 内,
最大值 f(π/6) = 3/2,最小值 f(π/2) = 0
f(π/6) = 1+cos(π/3) = 3/2, f(π/2) = 1+cosπ = 0,
f(2π/3) = 1+cos(4π/3) = 1 - √2/2.
f(x) = 1+cos2x, 在 [π/6,2π/3] 内,
最大值 f(π/6) = 3/2,最小值 f(π/2) = 0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询