求多项式f(x)=x‘5-4x’3+2x‘2+3x-2的有理根
1个回答
展开全部
f(x)=x^5-x³-3x³+3x²-x²+x+2x-2
=x³(x²-1)-3x²(x-1)-x(x-1)+2(x-1)
=(x-1)[x³(x+1)-3x²-x+2)
=(x-1)[x³(x+1)- (3x-2)(x+1)]
=(x-1)(x+1)(x³-3x+2)
=(x-1)(x+1)(x³-x-2x+2)
=(x-1)(x+1)[x(x²-1)-2(x-1)]
=(x-1)(x+1)(x-1)(x²+x-2)
=(x-1)(x+1)(x-1)(x+2)(x-1)
=(x-1)³(x+1)(x+2)
有理根为x=1, -1, -2
=x³(x²-1)-3x²(x-1)-x(x-1)+2(x-1)
=(x-1)[x³(x+1)-3x²-x+2)
=(x-1)[x³(x+1)- (3x-2)(x+1)]
=(x-1)(x+1)(x³-3x+2)
=(x-1)(x+1)(x³-x-2x+2)
=(x-1)(x+1)[x(x²-1)-2(x-1)]
=(x-1)(x+1)(x-1)(x²+x-2)
=(x-1)(x+1)(x-1)(x+2)(x-1)
=(x-1)³(x+1)(x+2)
有理根为x=1, -1, -2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询