求齐次微分方程xdy-y(lny-lnx)dx=0的通解

 我来答
京斯年0GZ
2022-06-05 · TA获得超过6202个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74万
展开全部
变形得dy/dx=y(lny-lnx)/x=y/x*ln(y/x)令y/x=py=pxy'=p+p'x代入原方程得p+p'x=plnp分离变量得dp/[p(lnp-1)]=dx/xed(p/e)/ln(p/e)=dx/x两边积分得e*lnln(p/e)=lnx+C 即e*lnln(y/ex)=lnx+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式