圆锥的侧面积怎么求?
S=πrl
圆锥侧面积公式是S=πrl。其中r为底面半径,l为圆锥母线。圆锥是以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体。
圆锥的侧面展开图是一个扇形,其半径等于圆锥的母线长,弧长等于圆锥的底面周长 ,圆锥的底面半径为r,母线长为l,则它的侧面积为:S=πrl。圆锥的全面积为圆锥的侧面积和底面积的和,即S=πrl+πr²。利用圆锥的侧面积可求圆锥上两点间的最短距离。
圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)
S=πrl
圆锥侧面积公式是S=πrl。其中r为底面半径,l为圆锥母线。圆锥是以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体。
圆锥的侧面展开图是一个扇形,其半径等于圆锥的母线长,弧长等于圆锥的底面周长 ,圆锥的底面半径为r,母线长为l,则它的侧面积为:S=πrl。圆锥的全面积为圆锥的侧面积和底面积的和,即S=πrl+πr²。利用圆锥的侧面积可求圆锥上两点间的最短距离。
圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)
圆锥的侧面积公式:S=1/2αl²=πrl
圆锥可以通过一个直角三角形沿一条直角边旋转而成,这种构造方式恰可以从直角三角形上看到圆锥的几个重要组成部分:
1、直角三角形中作为不动旋转轴的直角边构成圆锥的高,上端点为圆锥的顶点,下端点恰为圆锥底面圆心;
2、直角三角形另一条直角边为圆锥的底面半径,记作r;
3、直角三角形的斜边在圆锥上我们称之为母线,记作L。母线是圆锥侧面这个曲面上能找到唯一一组线段(只有它们是直的,其他的都是曲线。)
扩展资料:
圆锥的组成:
1、圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;
2、圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。
3、圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
4、圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
参考资料来源:
百度百科-圆锥