线性代数向量 A线性无关,其解应该为零,为什么还有非零解

 我来答
newmanhero
推荐于2017-12-16 · TA获得超过7769个赞
知道大有可为答主
回答量:1850
采纳率:100%
帮助的人:917万
展开全部
这个问题说明你对于齐次线性方程组Ax=0解的判定学习的一知半解。

首先,若矩阵A是m×n阶矩阵,Ax=0,若r(A)<n,即A的列向量线性相关,也就是说A的列秩<A的列数,也就是初高中时学的,方程个数比未知数少!!!也就是说假如3个未知量,只有2个方程,那么必然存在非零解。
此时说的是A的列秩!!!!!
那A的行向量呢?并没有涉及。

那么我们来看你的问题。
对于题目中的矩阵A是(n-1)×n阶矩阵,此时m=n-1.已知中说n维列向量α1,α2,...,αn-1线性无关。
那么α1T,α2T,...,αn-1T就是n维行向量,【注意:是n-1个n维行向量,n-1个哦!!!】
那么A的n-1个行向量线性无关。
由于A的秩=A的列秩=A的行秩。
所以A的列秩也是n-1,但不巧的是α1,α2,...,αn-1可是n维的!!!
所以r(A)=n-1<n,也就是说A的列秩<A的列数 !!!

要理解Ax=0的判定的真正含义,而不是记忆下符号!!!

newmanhero 2015年6月18日13:16:07

希望对你有所帮助,望采纳。
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
低调侃大山
2015-06-18 · 家事,国事,天下事,关注所有事。
低调侃大山
采纳数:67731 获赞数:374594

向TA提问 私信TA
展开全部
线性代数向量 A线性无关,其解只有零解,没有非零解。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
moxf1213
2015-06-18 · TA获得超过1157个赞
知道小有建树答主
回答量:1108
采纳率:57%
帮助的人:335万
展开全部
这是(n-1)xn矩阵,可以有非零解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shawshark12100
2015-06-18 · TA获得超过3.3万个赞
知道大有可为答主
回答量:2.9万
采纳率:76%
帮助的人:7442万
展开全部
因为A不是方阵。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式