分布式搜索引擎elasticsearch的架构原理
展开全部
分布式搜索引擎:把大量的索引数据拆散成多块,每台机器放一部分,然 后利用多台机器对分散之后的数据进行搜索,所有操作全部是分布在多台机器上进行,形成了 完整的分布式的架构。
近实时,有两层意思:
集群包含多个节点,每个节点属于哪个集群都是通过一个配置来决定的,
Node 是集群中的一个节点,节点也有一个名称,默认是随机分配的。默认节点会去加入一个名 称为 elasticsearch 的集群。如果直接启动一堆节点,那么它们会自动组成一个elasticsearch 集群,当然一个节点也可以组成 elasticsearch 集群。
文档是 es 中最小的数据单元,一个 document 可以是1条客户数据、1条商品分类数据、1条 订单数据,通常用json 数据结构来表示。每个 index 下的 type,都可以存储多条 document。
1个 document 里面有多个 field,每个 field 就是1个数据字段。
es 集群多个节点,会自动选举1个节点为 master 节点,这个 master 节点其实就是干一些管理 的工作的,比如维护索引元数据、负责切换 primary shard 和 replica shard 身份等。要是 master 节点宕机了,那么会重新选举1个节点为 master 节点。 如果是非 master节点宕机了,那么会由 master 节点,让那个宕机节点上的 primary shard 的身 份转移到其他机器上的 replica shard。接着你要是修复了那个宕机机器,重启了之后,master 节点会控制将缺失的 replica shard 分配过去,同步后续修改的数据之类的,让集群恢复正常。 说得更简单1点,就是说如果某个非 master 节点宕机了,那么此节点上的 primary shard 不就 没了。那好,master 会让 primary shard 对应的 replica shard(在其他机器上)切换为 primary shard。如果宕机的机器修复了,修复后的节点也不再是 primary shard,而是 replica shard。
索引可以拆分成多个 shard ,每个 shard 存储部分数据。拆分多个 shard是有好处的,一是支持横向扩展,比如你数据量是 3T,3 个 shard,每个 shard 就 1T 的数据, 若现在数据量增加到 4T,怎么扩展,很简单,重新建1个有 4 个 shard 的索引,将数据导进 去;二是提高性能,数据分布在多个 shard,即多台服务器上,所有的操作,都会在多台机器 上并行分布式执行,提高了吞吐量和性能。 接着就是这个 shard 的数据实际是有多个备份,就是说每个 shard 都有1个 primary shard ,负责写入数据,但是还有多个 replica shard 。 primary shard 写入数据之后, 会将数据同步到其他几个 replica shard上去。
通过这个 replica 的方案,每个 shard 的数据都有多个备份,如果某个机器宕机了,没关系啊, 还有别的数据副本在别的机器上,这样子就高可用了。
总结:分布式就是两点,1.通过shard切片实现横向扩展;2.通过replica副本机制,实现高可用
基本概念
写数据过程:客户端通过hash选择一个node发送请求,这个node被称做coordinating node(协调节点),协调节点对docmount进行路由,将请求转发给到对应的primary shard,primary shard 处理请求,将数据同步到所有的replica shard,此时协调节点,发现primary shard 和所有的replica shard都处理完之后,就反馈给客户端。
客户端发送get请求到任意一个node节点,然后这个节点就称为协调节点,协调节点对document进行路由,将请求转发到对应的node,此时会使用随机轮询算法,在primary shard 和replica shard中随机选择一个,让读取请求负载均衡,接收请求的node返回document给协调节点,协调节点,返回document给到客户端
es最强大的是做全文检索,就是比如你有三条数据
1.java真好玩儿啊
2.java好难学啊
3.j2ee特别牛
你根据java关键词来搜索,将包含java的document给搜索出来。
更新/删除数据过程,首先还是write、merge操作,然后flush过程中:
1、write过程和上面的一致;
2、refresh过程有点区别
所谓的倒排索引,就是把你的数据内容先分词,每句话分成一个一个的关键词,然后记录好每一个关键词对应出现在了哪些 id 标识的数据。
然后你可以从其他地根据这个 id 找到对应的数据就可以了,这个就是倒排索引的数据格式 以及搜索的方式,这种利倒排索引查找数据的式,也被称之为全文检索。
Inverted Index就是我们常见的倒排索引, 主要包括两部分:
一个有序的数据字典 Dictionary(包括单词 Term 和它出现的频率)。
与单词 Term 对应的 Postings(即存在这个单词的文件)
当我们搜索的时候,首先将搜索的内容分解,然后在字典里找到对应 Term,从而查找到与搜索相关的文件内容。
本质上,Stored Fields 是一个简单的键值对 key-value。默认情况下,Stored Fields是为false的,ElasticSearch 会存储整个文件的 JSON source。
哪些情形下需要显式的指定store属性呢?大多数情况并不是必须的。从_source中获取值是快速而且高效的。如果你的文档长度很长,存储 _source或者从_source中获取field的代价很大,你可以显式的将某些field的store属性设置为yes。缺点如上边所说:假设你存 储了10个field,而如果想获取这10个field的值,则需要多次的io,如果从Stored Field 中获取则只需要一次,而且_source是被压缩过 的。
这个时候你可以指定一些字段store为true,这意味着这个field的数据将会被单独存储(实际上是存两份,source和 Stored Field都存了一份)。这时候,如果你要求返回field1(store:yes),es会分辨出field1已经被存储了,因此不会从_source中加载,而是从field1的存储块中加载。
Doc_values 本质上是一个序列化的 列式存储,这个结构非常适用于聚合(aggregations)、排序(Sorting)、脚本(scripts access to field)等操作。而且,这种存储方式也非常便于压缩,特别是数字类型。这样可以减少磁盘空间并且提高访问速度,ElasticSearch 可以将索引下某一个 Document Value 全部读取到内存中进行操作.
Doc_values是存在磁盘的
在es中text类型字段默认只会建立倒排索引,其它几种类型在建立倒排索引的时候还会建立正排索引,当然es是支持自定义的。在这里这个正排索引其实就是Doc Value。
即上文所描述的动态索引
往 es 写的数据,实际上都写到磁盘文件里去了,查询的时候,操作系统会将磁盘文件里的数据自动缓存到 filesystem cache 中去。
es 的搜索引擎严重依赖于底层的 filesystem cache ,你如果给 filesystem cache 更多的 内存,尽量让内存可以容纳所有的 idx segment file 索引数据文件,那么你搜索的时候就 基本都是走内存的,性能会非常高。 性能差距究竟可以有多大?我们之前很多的测试和压测,如果走磁盘一般肯定上秒,搜索性能 绝对是秒级别的,1秒、5秒、10秒。但如果是走 filesystem cache ,是走纯内存的,那么一 般来说性能比走磁盘要高一个数量级,基本上就是毫秒级的,从几毫秒到几百毫秒不等。
那如何才能节约filesystem cache这部分的空间呢?
当写数据到ES时就要考虑到最小化数据,当一行数据有30几个字段,并不需要把所有的数据都写入到ES,只需要把关键的需要检索的几列写入。这样能够缓存的数据就会越多。 所以需要控制每台机器写入的数据最好小于等于或者略大于filesystem cache空间最好。 如果要搜索海量数据,可以考虑用ES+Hbase架构。用Hbase存储海量数据,然后ES搜索出doc id后,再去Hbase中根据doc id查询指定的行数据。
当每台机器写入的数据大于cache os太多时,导致太多的数据无法放入缓存,那么就可以把一部分热点数据刷入缓存中。
对于那些你觉得比较热的、经常会有人访问的数据,最好做个专门的缓存预热系统,就是 对热数据每隔一段时间,就提前访问一下,让数据进入 filesystem cache 里去。这样下 次别人访问的时候,性能肯定会好很多。
把热数据和冷数据分开,写入不同的索引里,然后确保把热索引数据刷到cache里。
在ES里最好不要用复杂的关联表的操作。当需要这样的场景时,可以在创建索引的时候,就把数据关联好。比如在mysql中需要根据关联ID查询两张表的关联数据:select A.name ,B.age from A join B where A.id = B.id,在写入ES时直接去把相关联数据放到一个document就好。
es 的分页是较坑的,为啥呢?举个例子吧,假如你每页是 10 条数据,你现在要查询第 100 页,实际上是会把每个 shard 上存储的前 1000 条数据都查到1个协调节点上,如果你有个 5 个 shard,那么就有 5000 条数据,接着协调节点对这 5000 条数据进行一些合并、处理,再获取到 最终第 100 页的 10 条数据。
分布式的,你要查第 100 页的 10 条数据,不可能说从 5 个 shard,每个 shard 就查 2 条数据, 最后到协调节点合并成 10 条数据吧?你必须得从每个 shard 都查 1000 条数据过来,然后根据 你的需求进行排序、筛选等等操作,最后再次分页,拿到里面第 100 页的数据。你翻页的时 候,翻的越深,每个 shard 返回的数据就越多,而且协调节点处理的时间越长,非常坑爹。所 以用 es 做分页的时候,你会发现越翻到后面,就越是慢。
我们之前也是遇到过这个问题,用 es 作分页,前几页就几十毫秒,翻到 10 页或者几十页的时 候,基本上就要 5~10 秒才能查出来一页数据了。
解决方案吗?
1)不允许深度分页:跟产品经理说,你系统不允许翻那么深的页,默认翻的越深,性能就越差;
2)在APP或者公众号里,通过下拉来实现分页,即下拉时获取到最新页,可以通过scroll api来实现;
scroll 会1次性给你生成所有数据的1个快照,然后每次滑动向后翻页就是通过游标 scroll_id 移动获取下一页,性能会比上面说的那种分页性能要高很多很 多,基本上都是毫秒级的。 但是,唯1的缺点就是,这个适合于那种类似微博下拉翻页的,不能随意跳到任何一页的场 景。也就是说,你不能先进到第 10 页,然后去第 120 页,然后再回到第 58 页,不能随意乱跳 页。所以现在很多APP产品,都是不允许你随意翻页的,也有一些网站,做的就是你只能往 下拉,一页一页的翻。
初始化时必须指定 scroll 参数,告诉 es 要保存此次搜索的上下文多长时间。你需要确保用户不会持续不断翻页翻几个小时,否则可能因为超时而失败。
除了用 scroll api ,也可以用 search_after 来做, search_after 的思想是使用前一页的结果来帮助检索下一页的数据,显然,这种方式也不允许你随意翻页,你只能一页一页往后 翻。初始化时,需要使用一个唯1值的字段作为 sort 字段。
近实时,有两层意思:
集群包含多个节点,每个节点属于哪个集群都是通过一个配置来决定的,
Node 是集群中的一个节点,节点也有一个名称,默认是随机分配的。默认节点会去加入一个名 称为 elasticsearch 的集群。如果直接启动一堆节点,那么它们会自动组成一个elasticsearch 集群,当然一个节点也可以组成 elasticsearch 集群。
文档是 es 中最小的数据单元,一个 document 可以是1条客户数据、1条商品分类数据、1条 订单数据,通常用json 数据结构来表示。每个 index 下的 type,都可以存储多条 document。
1个 document 里面有多个 field,每个 field 就是1个数据字段。
es 集群多个节点,会自动选举1个节点为 master 节点,这个 master 节点其实就是干一些管理 的工作的,比如维护索引元数据、负责切换 primary shard 和 replica shard 身份等。要是 master 节点宕机了,那么会重新选举1个节点为 master 节点。 如果是非 master节点宕机了,那么会由 master 节点,让那个宕机节点上的 primary shard 的身 份转移到其他机器上的 replica shard。接着你要是修复了那个宕机机器,重启了之后,master 节点会控制将缺失的 replica shard 分配过去,同步后续修改的数据之类的,让集群恢复正常。 说得更简单1点,就是说如果某个非 master 节点宕机了,那么此节点上的 primary shard 不就 没了。那好,master 会让 primary shard 对应的 replica shard(在其他机器上)切换为 primary shard。如果宕机的机器修复了,修复后的节点也不再是 primary shard,而是 replica shard。
索引可以拆分成多个 shard ,每个 shard 存储部分数据。拆分多个 shard是有好处的,一是支持横向扩展,比如你数据量是 3T,3 个 shard,每个 shard 就 1T 的数据, 若现在数据量增加到 4T,怎么扩展,很简单,重新建1个有 4 个 shard 的索引,将数据导进 去;二是提高性能,数据分布在多个 shard,即多台服务器上,所有的操作,都会在多台机器 上并行分布式执行,提高了吞吐量和性能。 接着就是这个 shard 的数据实际是有多个备份,就是说每个 shard 都有1个 primary shard ,负责写入数据,但是还有多个 replica shard 。 primary shard 写入数据之后, 会将数据同步到其他几个 replica shard上去。
通过这个 replica 的方案,每个 shard 的数据都有多个备份,如果某个机器宕机了,没关系啊, 还有别的数据副本在别的机器上,这样子就高可用了。
总结:分布式就是两点,1.通过shard切片实现横向扩展;2.通过replica副本机制,实现高可用
基本概念
写数据过程:客户端通过hash选择一个node发送请求,这个node被称做coordinating node(协调节点),协调节点对docmount进行路由,将请求转发给到对应的primary shard,primary shard 处理请求,将数据同步到所有的replica shard,此时协调节点,发现primary shard 和所有的replica shard都处理完之后,就反馈给客户端。
客户端发送get请求到任意一个node节点,然后这个节点就称为协调节点,协调节点对document进行路由,将请求转发到对应的node,此时会使用随机轮询算法,在primary shard 和replica shard中随机选择一个,让读取请求负载均衡,接收请求的node返回document给协调节点,协调节点,返回document给到客户端
es最强大的是做全文检索,就是比如你有三条数据
1.java真好玩儿啊
2.java好难学啊
3.j2ee特别牛
你根据java关键词来搜索,将包含java的document给搜索出来。
更新/删除数据过程,首先还是write、merge操作,然后flush过程中:
1、write过程和上面的一致;
2、refresh过程有点区别
所谓的倒排索引,就是把你的数据内容先分词,每句话分成一个一个的关键词,然后记录好每一个关键词对应出现在了哪些 id 标识的数据。
然后你可以从其他地根据这个 id 找到对应的数据就可以了,这个就是倒排索引的数据格式 以及搜索的方式,这种利倒排索引查找数据的式,也被称之为全文检索。
Inverted Index就是我们常见的倒排索引, 主要包括两部分:
一个有序的数据字典 Dictionary(包括单词 Term 和它出现的频率)。
与单词 Term 对应的 Postings(即存在这个单词的文件)
当我们搜索的时候,首先将搜索的内容分解,然后在字典里找到对应 Term,从而查找到与搜索相关的文件内容。
本质上,Stored Fields 是一个简单的键值对 key-value。默认情况下,Stored Fields是为false的,ElasticSearch 会存储整个文件的 JSON source。
哪些情形下需要显式的指定store属性呢?大多数情况并不是必须的。从_source中获取值是快速而且高效的。如果你的文档长度很长,存储 _source或者从_source中获取field的代价很大,你可以显式的将某些field的store属性设置为yes。缺点如上边所说:假设你存 储了10个field,而如果想获取这10个field的值,则需要多次的io,如果从Stored Field 中获取则只需要一次,而且_source是被压缩过 的。
这个时候你可以指定一些字段store为true,这意味着这个field的数据将会被单独存储(实际上是存两份,source和 Stored Field都存了一份)。这时候,如果你要求返回field1(store:yes),es会分辨出field1已经被存储了,因此不会从_source中加载,而是从field1的存储块中加载。
Doc_values 本质上是一个序列化的 列式存储,这个结构非常适用于聚合(aggregations)、排序(Sorting)、脚本(scripts access to field)等操作。而且,这种存储方式也非常便于压缩,特别是数字类型。这样可以减少磁盘空间并且提高访问速度,ElasticSearch 可以将索引下某一个 Document Value 全部读取到内存中进行操作.
Doc_values是存在磁盘的
在es中text类型字段默认只会建立倒排索引,其它几种类型在建立倒排索引的时候还会建立正排索引,当然es是支持自定义的。在这里这个正排索引其实就是Doc Value。
即上文所描述的动态索引
往 es 写的数据,实际上都写到磁盘文件里去了,查询的时候,操作系统会将磁盘文件里的数据自动缓存到 filesystem cache 中去。
es 的搜索引擎严重依赖于底层的 filesystem cache ,你如果给 filesystem cache 更多的 内存,尽量让内存可以容纳所有的 idx segment file 索引数据文件,那么你搜索的时候就 基本都是走内存的,性能会非常高。 性能差距究竟可以有多大?我们之前很多的测试和压测,如果走磁盘一般肯定上秒,搜索性能 绝对是秒级别的,1秒、5秒、10秒。但如果是走 filesystem cache ,是走纯内存的,那么一 般来说性能比走磁盘要高一个数量级,基本上就是毫秒级的,从几毫秒到几百毫秒不等。
那如何才能节约filesystem cache这部分的空间呢?
当写数据到ES时就要考虑到最小化数据,当一行数据有30几个字段,并不需要把所有的数据都写入到ES,只需要把关键的需要检索的几列写入。这样能够缓存的数据就会越多。 所以需要控制每台机器写入的数据最好小于等于或者略大于filesystem cache空间最好。 如果要搜索海量数据,可以考虑用ES+Hbase架构。用Hbase存储海量数据,然后ES搜索出doc id后,再去Hbase中根据doc id查询指定的行数据。
当每台机器写入的数据大于cache os太多时,导致太多的数据无法放入缓存,那么就可以把一部分热点数据刷入缓存中。
对于那些你觉得比较热的、经常会有人访问的数据,最好做个专门的缓存预热系统,就是 对热数据每隔一段时间,就提前访问一下,让数据进入 filesystem cache 里去。这样下 次别人访问的时候,性能肯定会好很多。
把热数据和冷数据分开,写入不同的索引里,然后确保把热索引数据刷到cache里。
在ES里最好不要用复杂的关联表的操作。当需要这样的场景时,可以在创建索引的时候,就把数据关联好。比如在mysql中需要根据关联ID查询两张表的关联数据:select A.name ,B.age from A join B where A.id = B.id,在写入ES时直接去把相关联数据放到一个document就好。
es 的分页是较坑的,为啥呢?举个例子吧,假如你每页是 10 条数据,你现在要查询第 100 页,实际上是会把每个 shard 上存储的前 1000 条数据都查到1个协调节点上,如果你有个 5 个 shard,那么就有 5000 条数据,接着协调节点对这 5000 条数据进行一些合并、处理,再获取到 最终第 100 页的 10 条数据。
分布式的,你要查第 100 页的 10 条数据,不可能说从 5 个 shard,每个 shard 就查 2 条数据, 最后到协调节点合并成 10 条数据吧?你必须得从每个 shard 都查 1000 条数据过来,然后根据 你的需求进行排序、筛选等等操作,最后再次分页,拿到里面第 100 页的数据。你翻页的时 候,翻的越深,每个 shard 返回的数据就越多,而且协调节点处理的时间越长,非常坑爹。所 以用 es 做分页的时候,你会发现越翻到后面,就越是慢。
我们之前也是遇到过这个问题,用 es 作分页,前几页就几十毫秒,翻到 10 页或者几十页的时 候,基本上就要 5~10 秒才能查出来一页数据了。
解决方案吗?
1)不允许深度分页:跟产品经理说,你系统不允许翻那么深的页,默认翻的越深,性能就越差;
2)在APP或者公众号里,通过下拉来实现分页,即下拉时获取到最新页,可以通过scroll api来实现;
scroll 会1次性给你生成所有数据的1个快照,然后每次滑动向后翻页就是通过游标 scroll_id 移动获取下一页,性能会比上面说的那种分页性能要高很多很 多,基本上都是毫秒级的。 但是,唯1的缺点就是,这个适合于那种类似微博下拉翻页的,不能随意跳到任何一页的场 景。也就是说,你不能先进到第 10 页,然后去第 120 页,然后再回到第 58 页,不能随意乱跳 页。所以现在很多APP产品,都是不允许你随意翻页的,也有一些网站,做的就是你只能往 下拉,一页一页的翻。
初始化时必须指定 scroll 参数,告诉 es 要保存此次搜索的上下文多长时间。你需要确保用户不会持续不断翻页翻几个小时,否则可能因为超时而失败。
除了用 scroll api ,也可以用 search_after 来做, search_after 的思想是使用前一页的结果来帮助检索下一页的数据,显然,这种方式也不允许你随意翻页,你只能一页一页往后 翻。初始化时,需要使用一个唯1值的字段作为 sort 字段。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询