判断函数是否连续方法:求出某点左右极限,如果左极限等于右极限且等于函数在此处的函数值,则函数在此点连续,如果任意点在考察的范围内都满足这个条件,则该函数是连续的。
函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的,对于这种现象,我们说态塌喊因变量关于自变量是连续变化的,
可用极限给出严格描述:设函数y=f(x)在x0点附近有定义,如果有lim(x->x0) f(x)=f(x0),则称函数f在x0点连续。如果定义在区间I上的函数在每一点x∈I都连续,则说f在I上连续,此时,它在直角坐标系中的图像是一条没有断裂的连续曲线。
扩展资料:
法则:
定理一 在某点连续的有限个函数经有限次和、差、积、商(分母不为0) 运算,结果仍是一个在该点连续的函数。
定理二 连续单调递增 (递减)函数的反函数,也帆野连续单调递增 (递减)。
定理三 连续函数的复合函数是连续的。
这些性质都可以从连续的定义以及极限的相关性质中得出。
参考资料:百衫衡度百科-连续函数
根据函数的连续性定义来判断。
函数连续性定义:
对定义域内任意一个x0,在x0的领域内都有limf(x)=f(x0)(x->x0)
即函数在x0处的极限值等于该点的函数值时,由函数在该点连续,如果函数在定义域内的每一个点都连续,滚猜则该函数在定义域内连续。
扩展资料:
函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则罩备姿f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式物绝,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
参考资料:
函数y=f(x)当自变量模卜x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的,对于这种现象,我们说因变量关于自变量是连续变化的,可用极限给出严格描述:设函数y=f(x)在x0点附近有定义,如果有lim(x->x0) f(x)=f(x0),则称函数f在x0点连续。如果定义在区间I上的函数在每一点x∈I都连续,轮绝则说f在I上连续,此时,它在直角坐标系中的图像是一条没有断裂的连续曲线。
函数连续性定义:
对定义域内任意一个x0,在x0的领域内都有limf(x)=f(x0)(x->x0)
即函数在x0处的极限值等于该点的函数值时,由宏圆函数在该点连续,如果函数在定义域内的每一个点都连续,则该函数在定义蔽升塌域内连续。
从图像上看,函数连续,则图像是一笑散条不断开的曲线。如果从某点处断开,则函数在该点就不连续了。
复合函数的话图像都看不了啊
如果是基本初等函数构成的复合函数,则在对应的定义域的每一个区间内一定是连续的。
是不是分段函数,都按三步骤判断即可。
例:y=x(0≤x<1);y=x(1≤x)判断分段函数在x=1处是否连续。
①函数在x=1处,函数值为1,
②在1处的左极限为1 右极限为1,
③x=1处,左右极限和函数值相吵坦等锋碰迟 所以函数银李在1处连续。
广告 您可能关注的内容 |