已知a,B为锐角,cosa=1/7,sin=5√3/14,求角B的值
2015-09-08 · 知道合伙人人力资源行家
518姚峰峰
知道合伙人人力资源行家
向TA提问 私信TA
知道合伙人人力资源行家
采纳数:50865
获赞数:564248
大学班长,中共党员。一次性通过英语四六级及计算机二级,现任公司综合办主任。为百度金榜题名时团队团长。
向TA提问 私信TA
关注
展开全部
已知α,β为锐角,
所以sinα>0 cosβ>0 sinβ>0
cosα=1/7
sinα=√(1-cos²α)=√(1 - 1/7²)= (4√3)/7
sin(α+β)
= sinαcosβ+cosαsinβ
= (4√3)/7cosβ+(1/7)sinβ
= (4√3)/7√(1-sin²β) +(1/7)sinβ
即
(4√3)/7√(1-sin²β) +(1/7)sinβ = 5√3/14
(4√3)/7√(1-sin²β) = 5√3/14 -(1/7)sinβ
两边平方
(48/49)(1-sin²β)= 75/196 - (5√3)/49sinβ + (1/49)sin²β
sin²β- (5√3)/49sinβ- 117/196 = 0
(sinβ- (5√3)/98)² = 5808/9604
sinβ- (5√3)/98 = (44√3)/98
sinβ = (49√3)/98 = (√3)/2
β = 60°
希望帮到你 望采纳 谢谢 加油!!
所以sinα>0 cosβ>0 sinβ>0
cosα=1/7
sinα=√(1-cos²α)=√(1 - 1/7²)= (4√3)/7
sin(α+β)
= sinαcosβ+cosαsinβ
= (4√3)/7cosβ+(1/7)sinβ
= (4√3)/7√(1-sin²β) +(1/7)sinβ
即
(4√3)/7√(1-sin²β) +(1/7)sinβ = 5√3/14
(4√3)/7√(1-sin²β) = 5√3/14 -(1/7)sinβ
两边平方
(48/49)(1-sin²β)= 75/196 - (5√3)/49sinβ + (1/49)sin²β
sin²β- (5√3)/49sinβ- 117/196 = 0
(sinβ- (5√3)/98)² = 5808/9604
sinβ- (5√3)/98 = (44√3)/98
sinβ = (49√3)/98 = (√3)/2
β = 60°
希望帮到你 望采纳 谢谢 加油!!
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询