f(x)在[a,b]二阶可导,能够说明什么,是否f(x)一阶可导,f(x)连续呢?
展开全部
很简单
f(x)于[a,b]二阶可导,说明f(x)在(a,b)光滑,且连续于[a,b]
这里顺便说一下光滑的意思,说直观点就是f'(x)在(a,b)连续,注意我这里去掉了点a,点b,其实可以这么理解,f(x)在a,b点上只存在右导数和左导数.按照光滑看,可以说是右连续和左连续,但是连续要求函数不但要右连续还要左连续.所以我才将这两点去掉.
你看,既然光滑了,自然也就连续了.记住,连续在图形上看是连续而不中断.可导必连续,但是连续不一定可导.如函数f(x)=|x|在x轴上连续,但是在x=0处却不可导,因为其关于x=0的左导数和右导数分别是-1,1,和连续的定义一样,两者必须要相等.但实际上不相等.所以导数不存在.
我估计你对连续这个概念和导数的概念理解的不够.希望多看一下这方面的知识.
最后希望我的解答对你有所帮助.
f(x)于[a,b]二阶可导,说明f(x)在(a,b)光滑,且连续于[a,b]
这里顺便说一下光滑的意思,说直观点就是f'(x)在(a,b)连续,注意我这里去掉了点a,点b,其实可以这么理解,f(x)在a,b点上只存在右导数和左导数.按照光滑看,可以说是右连续和左连续,但是连续要求函数不但要右连续还要左连续.所以我才将这两点去掉.
你看,既然光滑了,自然也就连续了.记住,连续在图形上看是连续而不中断.可导必连续,但是连续不一定可导.如函数f(x)=|x|在x轴上连续,但是在x=0处却不可导,因为其关于x=0的左导数和右导数分别是-1,1,和连续的定义一样,两者必须要相等.但实际上不相等.所以导数不存在.
我估计你对连续这个概念和导数的概念理解的不够.希望多看一下这方面的知识.
最后希望我的解答对你有所帮助.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询