1/(1+e^x)的积分是什么?
1个回答
展开全部
∫1/(1+e^xdx)=∫1-e^x/(1+e^x)dx=x-ln(1+e^x)
1/(1+e^x)=(1+e^x-e^x)/(1+e^x)=1-e^x/(1+e^x)
∫1/(1+e^x)dx
=∫e^(-x)/(1+e^(-x))dx
=-∫1/(1+e^(-x))d(1+e^(-x))
=-ln(1+e^(-x))+C
=-ln((1+e^x)/e^x)+C
=x-ln(1+e^x)+C
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询