ln1-x的泰勒级数展开是什么?
展开全部
ln(1-x)的泰勒级数展开是:ln(1-x)=ln=Σ(-1)^(n+1)(-x)^n/n=Σx^n/n,-1≤x。泰勒展开f(x)=f(0)+f′(0)x+f″(0)x²。
泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
例如:
y = ln (1 + x)的泰勒展开式为:
y = ln (1 + x) = x - x^2/2 + x^3/3 - x^4/4 + 。
当 |x| < 1="" 时,ln="" (1="" +="" x)="" -(x="" -="" x^2/2)="x^3/3" -="" x^4/4="" +="" .=> 0。
因此 ln(1 + x) > x - x^2/2。
TableDI
2024-07-18 广告
2024-07-18 广告
VLOOKUP是Excel中的常用函数,用于在表格的首列中查找值,并返回该行中指定列的值。其基本语法为:`VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])`。...
点击进入详情页
本回答由TableDI提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询