判断f(x)=x+4/x在(0,正无穷大)的单调性
3个回答
展开全部
先给你证明
y=f(x)=x+1/x的单调性吧!
你再代入就可以了!
f(x)=x+1/x
首先你要知道他的定义域是x不等于0
当x>0,
由均值不等式有:
f(x)=x+1/x>=2根号(x*1/x)=2
当x=1/x取等
x=1,有最小值是:2,没有最大值。
当x<0,-x>0
f(x)=-(-x-1/x)
<=-2
当-x=-1/x取等。
x=-1,有最大值,没有最小值。
值域是:(负无穷,0)并(0,正无穷)
--------------
其实对钩函数的一般形式是:
f(x)=x+k/x(k>0)
定义域是:{x|x不等于0}
值域是:{y|y不等于0}
当x>0,有x=根号k,有最小值是2根号k
当x<0,有x=-根号k,有最大值是:-2根号k
y=f(x)=x+1/x的单调性吧!
你再代入就可以了!
f(x)=x+1/x
首先你要知道他的定义域是x不等于0
当x>0,
由均值不等式有:
f(x)=x+1/x>=2根号(x*1/x)=2
当x=1/x取等
x=1,有最小值是:2,没有最大值。
当x<0,-x>0
f(x)=-(-x-1/x)
<=-2
当-x=-1/x取等。
x=-1,有最大值,没有最小值。
值域是:(负无穷,0)并(0,正无穷)
--------------
其实对钩函数的一般形式是:
f(x)=x+k/x(k>0)
定义域是:{x|x不等于0}
值域是:{y|y不等于0}
当x>0,有x=根号k,有最小值是2根号k
当x<0,有x=-根号k,有最大值是:-2根号k
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询