请证明一下‘若f(x)满足 f(x+T) = - f(x),则f(x)是周期为2T的周期函数.’

 我来答
户如乐9318
2022-06-13 · TA获得超过6625个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:135万
展开全部
把f(x+T)看成f(y)
f(x+2T) = f((x+T)+T)= f(y+T)= - f(y)= - [f(x+T)] =-[-f(x)]=f(x)
f(x+2T) = f(x)所以是周期2T的周期函数 f(x+2T)=f[(x+T)+T]=-f(x+t)=f(x) f(x+2T)=f[(x+T)+T]=-f(x+T)=-[-f(x)]=f(x)
所以f(x)是周期为2T的周期函数。 f(x+2T)=f[(x+T)+T]=-f(x+T)=-[-f(x)]=f(x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式