求拉氏变换微分定理的证明全过程

 我来答
科创17
2022-05-25 · TA获得超过5929个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:178万
展开全部
拉普拉斯变换:若f(t)的拉普拉斯变换为F(s),则L{f '(t)}=sF(s)-f(0)
证明:
左边=L{f '(t)}
=∫[0→+∞] f '(t)e^(-st) dt 下面分部积分
=∫[0→+∞] e^(-st) d(f(t))
=f(t)e^(-st)|[0→+∞] + s∫[0→+∞] f(t)e^(-st) dt
=-f(0)+sF(s)
=右边
如果解决了问题,请采纳.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式