什么是不等式意思介绍

 我来答
会哭的礼物17
2022-06-23 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6327
采纳率:100%
帮助的人:35.7万
展开全部

  不等式既可以表达一个命题,也可以表示一个问题,那么你对不等式了解多少呢?以下是由我整理关于什么是不等式的内容,希望大家喜欢!

  什么是不等式

  一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

  通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

  不等式的基本性质

  ①如果 ,那么 ;如果 ,那么 ;(对称性)

  ②如果x>y,y>z;那么x>z;(传递性)

  ③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)

  ④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)

  ⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)

  ⑥如果x>y>0,m>n>0,那么xm>yn;

  ⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。

  或者说,不等式的基本性质有:

  ①对称性;

  ②传递性;

  ③加法单调性,即同向不等式可加性;

  ④乘法单调性;

  ⑤同向正值不等式可乘性;

  ⑥正值不等式可乘方;

  ⑦正值不等式可开方;

  ⑧倒数法则。

  ……

  如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。

  另,不等式性质有三:

  ①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;

  ②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;

  ③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。 总结 :当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

  不等式的原理

  ①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

  ②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。

  ③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。

  ④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。

  不等式的注意事项

  符号

  不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号)

  不等式两边相乘或相除同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)

  不等式两边乘或除以同一个负数,不等号的方向改变。(÷或×1个负数的时候要变号)

  解集

  确定解集:

  ①比两个值都大,就比大的还大(同大取大);[4]

  ②比两个值都小,就比小的还小(同小取小);

  ③比大的大,比小的小,无解(大大小小取不了);

  ④比小的大,比大的小,有解在中间(小大大小取中间)。

  三个或三个以上不等式组成的不等式组,可以类推。

  数轴法

  可以在数轴上确定解集:

  把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式