1的三次方+2的三次方+……+n的三次方,求sn
展开全部
1^3+2^3+3^3+...+n^3
=(1+2+3+...+n)^2
=[n(n+1)/2]^2
所以,sn=[n(n+1)/2]^2
证明:假设n=k成立,k>=1
1^3+2^3+3^3+...+k^3=k^2(k+1)^2/4
则n=k+1
1^3+2^3+3^3+...+k^3+(k+1)^3
=k^2(k+1)^2/4+(k+1)^3
=(k+1)^2*[k^2+4(k+1)]/4
=(k+1)^2*(k+2)^2/4
=(k+1)^2*[(k+1)+1]^2/4
综上
1^3+2^3+3^3+...+n^3=n^2(n+1)^2/4
=(1+2+3+...+n)^2
=[n(n+1)/2]^2
所以,sn=[n(n+1)/2]^2
证明:假设n=k成立,k>=1
1^3+2^3+3^3+...+k^3=k^2(k+1)^2/4
则n=k+1
1^3+2^3+3^3+...+k^3+(k+1)^3
=k^2(k+1)^2/4+(k+1)^3
=(k+1)^2*[k^2+4(k+1)]/4
=(k+1)^2*(k+2)^2/4
=(k+1)^2*[(k+1)+1]^2/4
综上
1^3+2^3+3^3+...+n^3=n^2(n+1)^2/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询