曲线y= x²与y=√x所围成的图形的面积是多少
1个回答
展开全部
面积为1/3。
具体求解过程如下:
(1)y=x²曲线与y=√x曲线相交,交点为x1=0,x2=1;
(2)因此曲线y=x²与y=√x所围成的图形面积的范围为(0,1);
(3)面积S=∫[0到1](√x-x²)dx=(2/3x^3/2 -1/3x^3)|[0到1];
(4)(2/3x^3/2 -1/3x^3)|[0到1]=2/3-1/3=1/3;
(5)所以面积S=1/3,即曲线y=x²与y=√x所围成的图形面积为1/3。
扩展资料:
利用定积分求曲线围成的面积的步骤:
1、根据曲线方程,在坐标系中绘制两条曲线;
2、求出两条曲线的交点坐标,得到相交所得面积的变量取值范围;
3、列出求面积的定积分式子,该定积分式子的被积函数由两曲线方程相减得到;
4、解出定积分式子,解出的值即为两条曲线相交围成的面积大小。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询