隐函数的二阶偏导 设方程F(x,yz)=0确定隐函数z=z(x,y),求z对x的二阶偏导
1个回答
展开全部
F(x,yz)=0
求导:(用ez/ex表示z对x的偏导数)
F1'(x,yz)+F2'(x,yz)*y*ez/ex=0
解得:
ez/ex=-F1'(x,yz)/y*F2'(x,yz)
则
e^2z/ex^2
={[-F11''(x,yz)-y*ez/ex*F12''(x,yz)]*y*F2'(x,yz)-y*F1'(x,yz)*[F21'(x,yz)+yF22'(x,yz)*ez/ex]}/[y*F2'(x,yz)]^2
代入ez/ex=-F1'(x,yz)/y*F2'(x,yz)
可得:
e^2z/ex^2
={[-F11''(x,yz)+y*F1'(x,yz)/y*F2'(x,yz)*F12''(x,yz)]*y*F2'(x,yz)-y*F1'(x,yz)*[F21'(x,yz)-yF22'(x,yz)*F1'(x,yz)/y*F2'(x,yz)]}/[y*F2'(x,yz)]^2
={[-F11''(x,yz)+F1'(x,yz)*F12''(x,yz)]*y*F2'(x,yz)-y*F1'(x,yz)*[F21'(x,yz)-F22'(x,yz)*F1'(x,yz)/]}/[y*F2'(x,yz)]^2*F2'(x,yz)
求导:(用ez/ex表示z对x的偏导数)
F1'(x,yz)+F2'(x,yz)*y*ez/ex=0
解得:
ez/ex=-F1'(x,yz)/y*F2'(x,yz)
则
e^2z/ex^2
={[-F11''(x,yz)-y*ez/ex*F12''(x,yz)]*y*F2'(x,yz)-y*F1'(x,yz)*[F21'(x,yz)+yF22'(x,yz)*ez/ex]}/[y*F2'(x,yz)]^2
代入ez/ex=-F1'(x,yz)/y*F2'(x,yz)
可得:
e^2z/ex^2
={[-F11''(x,yz)+y*F1'(x,yz)/y*F2'(x,yz)*F12''(x,yz)]*y*F2'(x,yz)-y*F1'(x,yz)*[F21'(x,yz)-yF22'(x,yz)*F1'(x,yz)/y*F2'(x,yz)]}/[y*F2'(x,yz)]^2
={[-F11''(x,yz)+F1'(x,yz)*F12''(x,yz)]*y*F2'(x,yz)-y*F1'(x,yz)*[F21'(x,yz)-F22'(x,yz)*F1'(x,yz)/]}/[y*F2'(x,yz)]^2*F2'(x,yz)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询