
设A为n阶矩阵,证明A的转置与A的特征值相同.(求解)?
1个回答
展开全部
A^T 指A的转置,要求一个矩阵的特征值,先求特征多项式,即|λE-A|=0
A的转置的特征多项式 |λE-A^T|=0 ,
因 (λE-A)^T=(λE)^T-A^T=λE-A^T
所以|λE-A|=|(λE-A)^T|=|λE-A^T|
所以两个矩阵的特征多项式一样,所以其特征值相同,4,
A的转置的特征多项式 |λE-A^T|=0 ,
因 (λE-A)^T=(λE)^T-A^T=λE-A^T
所以|λE-A|=|(λE-A)^T|=|λE-A^T|
所以两个矩阵的特征多项式一样,所以其特征值相同,4,

2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询