证明:若正整数n不能被2和3整除,则n平方减1必能被24整除,?

 我来答
玄策17
2022-11-13 · TA获得超过937个赞
知道小有建树答主
回答量:276
采纳率:100%
帮助的人:63.9万
展开全部
n^2-1=(n+1)(n-1)
n-1,n,n+1是三个连续自然数,必有一个能被3整除.
因n不能被2,3整除,则n-1,n+1必有一个被3整除,同时均为2的倍数,连续2的倍数必有一个是4的倍数.故能被2*3*4=24整除.,6,25,2,a为奇数.设a=2k+1
a^2-1=(2k+1)^2-1=4k^2+4k=4k(k+1).
k(k+1)能被2整除,
8|4k(k+1),8|(a^2-1).
3|a(a-1)(a+1)=a(a^2-1),
3|(a^2-1).3与8互质,
24|(a^2-1),能被24整除.,1,n不能被2和3整除,则n必能写成6k+1或者6k-1的形式。
情况1:n²-1=(6k±1)²-1=12k(3k±1)
而k与3k±1中,必有一偶数,所以整个式子能被24整除。
证毕。,1,证明 因为n不能被2和3整除 所以n为奇数
n^1-1/24=(n+1)(n-1)/24
n为奇数 则n+1,n-1为连续的2个偶数 其中一个必能被4整除
(n+1)(n-1)能被8整除
又 n-1,n,n+1为3个连续自然数 必能整除3
所以n^1-1能被24整除。,1,因为正整数n不能被2和3整除,所以,n被6除的余数是1或5,
设 n=6k±1(k为正整数),
则 n^2-1=12k(3k±1),k为奇数时,3k±1为偶数;k为偶数时,3k±1为奇数,
因此12k(3k±1)必是24的倍数,
即n^2-1能被24整除,0,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式