等价无穷小是怎样的关系?
x→0,1-cosx~x^2/2
常用无穷小代换公式:
当x→0时
sinx~x
tanx~x
arcsinx~x
arctanx~x
1-cosx~1/2x^2
a^x-1~xlna
e^x-1~x
ln(1+x)~x
(1+Bx)^a-1~aBx
[(1+x)^1/n]-1~1/nx
loga(1+x)~x/lna
极限
数学分析的基础概念。它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值纤森磨)。
极限方法是数学分毁斗析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上,然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。
历史上是柯西(Cauchy,A.-L.)首先较为明确地给出了极限的一般定义。他说,“当为同一个变量所有的一系列值无限趋近于某个定值,并且最终与它的差要多小就有多小”(《分析教程》,1821),这个定值就称为这个变量的极限。
其后,外尔斯特拉斯(Weierstrass,K.(T.W.))按春手照这个思想给出严格定量的极限定义,这就是数学分析中使用的ε-δ定义或ε-Ν定义等。从此,各种极限问题才有了切实可行的判别准则。在分析学的其他学科中,极限的概念也有同样的重要性,在泛函分析和点集拓扑等学科中还有一些推广。
以上内容参考来源:百度百科-等价无穷小