f(x)=f(0)+xf'[θ(x)x]怎么来的
展开全部
首先,存在一个那样的a.
‘如果存在不相等的那样的a、a',
则f(x)=f(0)+xf'(ax),f(x)=f(0)+xf'(a'x)
所以xf'(ax)=xf'(a'x)
因为x≠0,所以f'(ax)=f'(a'x)
所以在ax、a'x之间存在b使得f''(b)=0,矛盾
所以a唯一存在
‘如果存在不相等的那样的a、a',
则f(x)=f(0)+xf'(ax),f(x)=f(0)+xf'(a'x)
所以xf'(ax)=xf'(a'x)
因为x≠0,所以f'(ax)=f'(a'x)
所以在ax、a'x之间存在b使得f''(b)=0,矛盾
所以a唯一存在
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询