求极限:lim┬(x→1)〖(tan π/4 x)^(tan π/2 x) 〗
3个回答
展开全部
L =lim(x->1) [ (tan (πx/4) ]^[tan(πx/2)]
两边取 ln
lnL
=lim(x->1) tan(πx/2).ln[tan(πx/4)]
=lim(x->1) ln[tan(πx/4)]/ cot(πx/2)
洛必达
=lim(x->1) { (π/4)[sec(πx/4)]^2/[tan(πx/4)] }/ { -(π/2).[csc(πx/2)]^2 }
化简
=-2.lim(x->1) [sin(πx/2)]^2 /[sin(πx/4).cos(πx/4)]
=-2. [1/(1/2)]
=-4
L = e^(-4)
得出结果
lim(x->1) [ (tan (πx/4) ]^[tan(πx/2)] =e^(-4)
两边取 ln
lnL
=lim(x->1) tan(πx/2).ln[tan(πx/4)]
=lim(x->1) ln[tan(πx/4)]/ cot(πx/2)
洛必达
=lim(x->1) { (π/4)[sec(πx/4)]^2/[tan(πx/4)] }/ { -(π/2).[csc(πx/2)]^2 }
化简
=-2.lim(x->1) [sin(πx/2)]^2 /[sin(πx/4).cos(πx/4)]
=-2. [1/(1/2)]
=-4
L = e^(-4)
得出结果
lim(x->1) [ (tan (πx/4) ]^[tan(πx/2)] =e^(-4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令 y = [tan(πx/4)]^[tan(πx/2)],
则 lny = [tan(πx/2)ln[tan(πx/4)] = ln[tan(πx/4)]/[cot(πx/2)]
lim<x→1> lny = lim<x→1> ln[tan(πx/4)]/[cot(πx/2)] (0/0)
= lim<x→1> {(π/4)[sec(πx/4)]^2/tan(πx/4)}/{(-π/2)[csc(πx/2)]^2}
= lim<x→1> (-1/2)[sin(πx/2)]^2/{tan(πx/4)[cos(πx/4)]^2}
= (-1/2)/(1/2) = -1
lim<x→1> [tan(πx/4)]^[tan(πx/2)] = e^(-1) = 1/e
则 lny = [tan(πx/2)ln[tan(πx/4)] = ln[tan(πx/4)]/[cot(πx/2)]
lim<x→1> lny = lim<x→1> ln[tan(πx/4)]/[cot(πx/2)] (0/0)
= lim<x→1> {(π/4)[sec(πx/4)]^2/tan(πx/4)}/{(-π/2)[csc(πx/2)]^2}
= lim<x→1> (-1/2)[sin(πx/2)]^2/{tan(πx/4)[cos(πx/4)]^2}
= (-1/2)/(1/2) = -1
lim<x→1> [tan(πx/4)]^[tan(πx/2)] = e^(-1) = 1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询