世界上最神奇的数字是什么

 我来答
大沈他次苹0B
2022-10-08 · TA获得超过7335个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:179万
展开全部

看似平凡的数字,为什么说他最神奇呢?我们把它从1乘到6看看:

142857×1=142857

142857×2=285714

142857×3=428571

142857×4=571428

142857×5=714285

142857×6=857142

同样的数字,只是调换了位置,反复的出现。

那么,小朋友你知道把它乘以7是多少吗?

[答案:我们会惊人的发现是999999,

142+857=999

14+28+57=99

最后,我们用142857乘与142857

答案是:20408122449前五位+上后五位的得数是多少呢?

20408+122449=142857

关于其中神奇的解答

“142857”

它发现于埃及金字塔内,它是一组神奇数字,它证明一星期有7天,它自我累加一次,就由它的6个数字,依顺序轮值一次,到了第7天,它们就放假,由999999去代班,数字越加越大,每超过一星期轮回,每个数字需要分身一次,你不需要计算机,只要知道它的分身方法,就可以知道继续累加的答案,它还有更神奇的地方等待你去发掘!也许,它就是宇宙的密码……

142857×1=142857(原数字)

142857×2=285714(轮值)

142857×3=428571(轮值)

142857×4=571428(轮值)

142857×5=714285(轮值)

142857×6=857142(轮值)

142857×7=999999(放假由9代班)

142857×8=1142856(7分身,即分为头一个数字1与尾数6,数列内少了7)

142857×9=1285713(4分身)

142857×10=1428570(1分身)

142857×11=1571427(8分身)

142857×12=1714284(5分身)

142857×13=1857141(2分身)

142857×14=1999998(9也需要分身变大)

继续算下去……

以上各数的单数和都是“9”。

有可能藏着一个大秘密。

以上面的金字塔神秘数字举例:1+4+2+8+5+7=27=2+7=9;您瞧瞧,它们的单数和竟然都是“9”。

依此类推,上面各个神秘数,它们的单数和都是“9”;怪也不怪!(它的双数和27还是3的三次方)无数巧合中必有概率,无数吻合中必有规律。

何谓规律?大自然规定的纪律!科学就是总结事实,从中找出规律。

任意取一个数字,例如取48965,将这个数字的各个数字进行求和,结果为4+8+9+6+5=32,再将结果求和,得3+2=5。

我将这种求和的方法称为求一个数字的众数和。

所有数字都有以下规律:

(1)众数和为9的数字与任意数相乘,其结果的众数和都为9。

例如306的众数和为9,而306×22=6732,数字6732的众数和也为9(6+7+3+2=18,1+8=9)。

(2)众数和为1的数字与任意数相乘,其结果的众数与被乘数的众数和相等。

例如13的众数和为4,325的众数和为1,而325×13=4225,数字4225的众数和也为4(4+2+2+5=13,1+3=4)。

(3)总结得出一个普遍的规律,如果A·B=C,则众数和为A的数字与众数和为B的数字相乘,其结果的众数和亦与C的众数和相等。

例如3×4=12。

取一个众数和为3的数字,如201,再取一个众数和为4的数字,如112,两数相乘,结果为201×112=22512,22512的众数和为3(2+2+5+1+2=12,1+2=3),可见3×4=12,数字12的众数和亦为3。

(4)另外,数字相加亦遵守此规律。

例如3+4=7。

求数字201和112的和,结果为313,求313的众数和,得数字7(3+1+3=7),刚好3与4相加的结果亦为7。

令人奇怪的是,中国古人早就知道此数学规律。

我们看看“河图”与“洛书”数字图就知道了。

以下是“洛书”数字图。

492

357

816(洛书)

世人都知道,“洛书”数字图之所以出名,是因为它是世界上最早的幻方图,它的特点是任意一组数字进行相加,其结果都为15。

其实用数字众数和的规律去分析此图,就会发现,任意一组数字的随机组合互相相乘,其结果的众数和都为9,例如第一排数字的一个随机组合数字为924,第二行的一个随机组合数字为159,两者相乘,其结果为146916,求其众数和,得1+4+6+9+1+6=27,2+7=9,可见,结果的众数和都为9。

这种巧合不能说明什么问题,让我们再看看“河图”数字图。

7

2

83549

1

6(河图)

“河图”的数字图没有“洛书”数字图出名,这是因为人们未能动发现其数学规律,但是用众数和的规律去分析它,就能发现它的奇妙之处。

“河图”数字图中,任意一组数字互相进行相乘,其结果的众数和都为6。

例如27165×38495=1045716675,求结果的众数和,1+4+5+7+1+6+6+7+5=42,4+2=6,可见,结果的众数和为6。

由此可见,“河图”的数字图亦不可能是随意摆设,否则,其结果的众数和不可能都为6。

从上述两个数字图可知,古人十分重视数字6与数字9。

无独有偶,太极图的就由数字6与数字9组合而成。

太极图的左边部分为数字6,太极图的右边部分为数字9。

“太极图”﹑“河图”﹑“洛书”通过种种手段暗示数字6与数字9的重要性,其中“河图”与“洛书”更是在熟悉数字众数和规律的前提下编制而成。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式