y=e^sin2x的微分
展开全部
由逐步求导法,各部分连乘
y'=2*cos2x*e^sin2x
因此,微分形式的结果为
dy=e^sin2xd(sin2x)
=e^(sin2x)cos2xd2x
=2e^(sin2x)cos2xdx
y'=2*cos2x*e^sin2x
因此,微分形式的结果为
dy=e^sin2xd(sin2x)
=e^(sin2x)cos2xd2x
=2e^(sin2x)cos2xdx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询