4.求不定积分: (x^2+1)/(x^2+2x+2)^2dx
2个回答
展开全部
(x^2+1)/(x^2+2x+2)^2 = (x^2+2x+2-2x-1)/(x^2+2x+2)^2
= 1/(x^2+2x+2) - (2x+1)/(x^2+2x+2)^2
= 1/(x^2+2x+2) - (2x+2-1)/(x^2+2x+2)^2
= 1/[(x+1)^2+1] - (2x+2)/(x^2+2x+2)^2 + 1/(x^2+2x+2)^2
I = ∫(x^2+1)/(x^2+2x+2)^2dx
= ∫(1/[(x+1)^2+1]dx - ∫[1/(x^2+2x+2)^2]d(x^2+2x+2)
+ ∫{1/[(x+1)^2+1]^2}dx
= arctan(x+1) + 1/(x^2+2x+2) + ∫{1/[(x+1)^2+1]^2}dx
令 x +1 = tant, 则 dx = (sect)^2dt
∫{1/[(x+1)^2+1]^2}dx = ∫(sect)^2dt/(sect)^4 = ∫(cost)^2dt
= (1/2)∫(1+cos2t)dt = t/2 + (1/4)sin2t
= (1/2)arctan(x+1) + (1/2)(x+1)/(x^2+2x+2)
得 I = arctan(x+1) + 1/(x^2+2x+2) + (1/2)arctan(x+1) + (1/2)(x+1)/(x^2+2x+2) + C
= (3/2)arctan(x+1) + (1/2)(x+3)/(x^2+2x+2) + C
= 1/(x^2+2x+2) - (2x+1)/(x^2+2x+2)^2
= 1/(x^2+2x+2) - (2x+2-1)/(x^2+2x+2)^2
= 1/[(x+1)^2+1] - (2x+2)/(x^2+2x+2)^2 + 1/(x^2+2x+2)^2
I = ∫(x^2+1)/(x^2+2x+2)^2dx
= ∫(1/[(x+1)^2+1]dx - ∫[1/(x^2+2x+2)^2]d(x^2+2x+2)
+ ∫{1/[(x+1)^2+1]^2}dx
= arctan(x+1) + 1/(x^2+2x+2) + ∫{1/[(x+1)^2+1]^2}dx
令 x +1 = tant, 则 dx = (sect)^2dt
∫{1/[(x+1)^2+1]^2}dx = ∫(sect)^2dt/(sect)^4 = ∫(cost)^2dt
= (1/2)∫(1+cos2t)dt = t/2 + (1/4)sin2t
= (1/2)arctan(x+1) + (1/2)(x+1)/(x^2+2x+2)
得 I = arctan(x+1) + 1/(x^2+2x+2) + (1/2)arctan(x+1) + (1/2)(x+1)/(x^2+2x+2) + C
= (3/2)arctan(x+1) + (1/2)(x+3)/(x^2+2x+2) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询