解答过程如下:
扩展资料
设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x) 在区间[a,b]的定积分,并称函数f(x)在区间[a,b]上可积。
被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。
设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。