逻辑学的基本规律是什么?
逻辑学16个公式:
肯定前件论式 (p → q) ; p ├ q 如果 p 则 q; p; 所以, q
否定后件论式 (p → q) ; ¬q ├ ¬p 如果 p 则 q; 非 q; 所以,非 p
假言三段论式 (p → q) ; (q → r) ├ (p → r) 如果 p 则 q; 如果 q 则 r; 所以,如果 p 则 r
选言三段论式 (p ∨ q) ; ¬p ├ q 要么 p 要么 q; 非 p; 所以, q
创造性二难论式 (p → q)∧(r → s) ; (p ∨ r) ├ (q ∨ s) 如果 p 则 q; 并且如果 r 则 s; 但是要么 p 要么 r; 所以,要么 q 要么 s
破坏性二难论式 (p → q)∧(r → s) ; (¬q ∨ ¬s) ├ (¬p ∨ ¬r) 如果 p 则 q; 并且如果 r 则 s; 但是要么非 q 要么非 s; 所以,要么非 p 要么非 r
简化论式 (p ∧ q) ├ p p 与 q 为真; 所以,p 为真
合取式 p, q ├ (p ∧ q) p 与 q 分别为真; 所以,它们结合起来是真
增加论式 p ├ (p ∨ q) p 是真; 所以析取式(p 或 q)为真
合成论式 (p → q) ∧ (p → r) ├ p → (q ∧ r) 如果 p 则 q; 并且如果 p 则 r; 所以,如果 p 是真则 q 与 r 为真
德·摩根定律(1) ¬(p ∧ q) ├ (¬p ∨ ¬ q) (p 与 q)的否定等价于(非 p 或非 q)
德·摩根定律(2) ¬(p ∨ q) ├ (¬p ∧ ¬ q) (p 或 q)的否定等价于(非 p 与非 q)
交换律(1) (p ∨ q) ├ (q ∨ p) (p 或 q)等价于(q 或 p)
交换律(2) (p ∧ q) ├ (q ∧ p) (p 与 q)等价于(q 与 p)
结合律(1) p ∨ (q ∨ r) ├ (p ∨ q) ∨ r p 或(q 或 r)等价于(p 或 q)或 r
结合律(2) p ∧ (q ∧ r) ├ (p ∧ q) ∧ r p 与(q 与 r)等价于(p 与 q)与 r
分配律(1) p ∧ (q ∨ r) ├ (p ∧ q) ∨ (p ∧ r) p 与(q 或 r)等价于(p 与 q)或(p 与 r)
分配律(2) p ∨ (q ∧ r) ├ (p ∨ q) ∧ (p ∨ r) p 或(q 与 r)等价于(p 或 q)与(p 或 r)
双重否定律 p ├ ¬¬p p 等价于非 p 的否定
换位律 (p → q) ├ (¬q → ¬p) 如果 p 则 q 等价于如果非 q 则非 p
实质蕴涵律 (p → q) ├ (p ∨ q) 如果 p 则 q 等价于要么非 p 要么 q
实质等价律(1) (p ↔ q) ├ (p → q) ∨ (q → p) (p 等价于 q) 意味着,要么(如果 p 是真则 q 是真)要么(如果 q 是真则 p 是真)
实质等价律(2) (p ↔ q) ├ (p ∧ q) ∨ (¬q ∧ ¬p) (p 等价于 q) 意味着,要么(p 与 q 都是真)要么(p 和 q 都是假)
输出律 (p ∧ q) → r ├ p → (q → r) 从(如 p 与 q 为是真则 r 是真)我们可以证明(如果 q 是真则 r 为真的条件是 p 为真)