拉格朗日中值定理的几何意义是什么?

 我来答
华凌聊民生
高能答主

2023-01-14 · 世界很大,慢慢探索
知道小有建树答主
回答量:544
采纳率:100%
帮助的人:9.1万
展开全部

拉格朗日中值定理公式是f(b)-f(a)=f'(ξ)(b-a)(a<ξ<b)。如果函数y=f(x)在闭区间a≤x≤b上连续且在开区间a≤x≤b上可微,那么在此区间内部至少存在一个中间值u,使得F(b)-f(a)/b-a=f(u).其中a<u<b2、多元函数中值定理不成立。但存在拟微分平均值定理设D是一凸域,多元函数f(D)=Y。

拉格朗日中值定理的几何意义

拉格朗日中值定理是微分中值定理的核心,其他中值定理是拉格朗日中值定理的特殊情况和推广,它是微分学应用的桥梁,在理论和实际中具有极高的研究价值。其几何意义是若连续曲线在两点间的每一点处都有不垂直于x轴的切线,则曲线在A,B间至少存在1点,使得该曲线在P点的切线与割线AB平行。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式