极限为0的情况

 我来答
教育小百科达人
2023-03-23 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:481万
展开全部

x→0+,1/x→+∞,e^(1/x)就是e的正无穷次方,结果仍为正无穷;

x→0-,1/x→-∞,e^(1/x)就是e的负无穷次方,相当于1/e^(+∞),也就是说分母无穷大,因此极限为0.

某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化。

被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。

为了排除极限概念中的直观痕迹,维尔斯特拉斯提出了极限的静态的抽象定义,给微积分提供了严格的理论基础。所谓  ,就是指:“如果对任何  ,总存在自然数N,使得当 时,不等式  恒成立”。

这个定义,借助不等式,通过ε和N之间的关系,定量地、具体地刻划了两个“无限过程”之间的联系。因此,这样的定义应该是目前比较严格的定义,可作为科学论证的基础,至今仍在数学分析书籍中使用。

在该定义中,涉及到的仅仅是‘数及其大小关系’,此外只是用给定、存在、任何等词语,已经摆脱了“趋近”一词,不再求助于运动的直观。(但是理解’极限‘概念不能够抛弃‘运动趋势’去理解, 否则容易导致’把常量概念不科学地进入到微积分’领域里)

扩展资料:

极限的思想方法贯穿于数学分析课程的始终。可以说数学分析中的几乎所有的概念都离不开极限。在几乎所有的数学分析著作中,都是先介绍函数理论和极限的思想方法。

然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:

(1)函数在点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。

(2)函数在点导数的定义,是函数值的增量 与自变量的增量比 ,当 时的极限。

(3)函数在点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。

(4)数项级数的敛散性是用部分和数列的极限来定义的。

(5)广义积分是定积分其中 为,任意大于的实数当时的极限,等等。

性质

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。

但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”

3、保号性:若  (或<0),则对任何  (a<0时则是  ),存在N>0,使n>N时有  (相应的xn<m)。

4、保不等式性:设数列{xn} 与{yn}均收敛。若存在正数N ,使得当n>N时有  ,则  (若条件换为xn>yn ,结论不变)。

5、和实数运算的相容性:譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列  也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。

6、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列  收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。

参考资料:百度百科---极限

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式