如何求二面角 综合法求二面角
1个回答
展开全部
综合法求二面角
一、基本知识
1.二面角图形的识别与思考途径:①找二面角的棱;②找二面角的两个半平面;③观察是否有直线⊥半平面;④观察是否有平面⊥半平面;⑤观察是否有直线⊥棱. 2.立体几何中,几种常用的平面图形的计算:
① 4:2:1()矩形中的垂直;②Rt Δ中,斜边上的高的计算;③ RtΔ中,直角边上一点向斜边引垂线,垂线段的计算.
3.若∠POA =∠POB ,则PO 在α内的射影是∠AOB 的平分线;
二、求直线与平面所成的角、求二面角的三种基本模式:
1.模式一:夹在二面角内的一条直线垂直于其中的一个半平面.
题1(09、湖北、理)如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =2a ,AD =√2a, 点E 是SD 上一点,且DE =λa(0<λ≤2) .(1)求证:对任意的λ∈(0,2],都有AC ⊥BE ;(2)设二面角C -AE -D 的大小为θ,直线BE 与平面ABCD 所成的角为Φ.若tan θ·tan Φ=1,求λ的值.
解:(1)AC ⊥BD, AC⊥SD ,所以AC ⊥平面SBD ,又BE 在平面SBD 内,∴AC ⊥BE (图1); 【二面角的识图:①找二面角的棱;②找二面角的两个半平面;③找图形特征(二面角的三种模式特征)】 【斜线与平面所成的角的识图:①找斜线;②找垂线;③找射影】 (2)图2:【夹在二面角C -AE -D 的直线CD ⊥半平面ADE 】
作DH ⊥AE 于H ,由三垂线定理知:CH ⊥AE ,所以∠CHD =θ,在Rt ΔADE 中,DH =
DE ·DA AE
=
λa 2a λa +2a
2
2
2
=
2·λa
,tan θ=CD :DH =2a :
λ+2
2
2·λa
=
λ+2λ
2
.
λa
2a
λ+2
2
又∠EBD =Φ,则tan Φ=DE :BD ==
λ
2
.由tan θ·tan
Φ=1,有
λ+2λ
2
·
λ
2
=1.
解得:λ=√2.
评注:①本题把“平面的斜线与平面所成的角”、“二面
角”融合为一道题,结合08、湖北考题,可以估测湖北考
题方向及武汉市2、4月模拟考题方向;②解答这类问题,首先要认识图形,掌握“平面的斜线与平面所成的角”、“二面角”的识图方法;③本题的图形模式是最简单的,“平面的斜线与平面所成的角”中,有一条直线⊥平面;④“二面角” 的图形中,夹在二面角内的一条直线垂直于其中的一个半平面.
2.模式二:夹在二面角内的一条直线垂直于棱.
题2(08、全国Ⅰ)四棱锥A -BCDE 中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,BC =2,CD =√2,AB =AC .(1)求证:AD ⊥CE ;(2)设侧面ABC 为等边三角形,求二面角C -AD -E 的大小.
(1) 证明:作AH ⊥BC 于H ,
则AH ⊥底面BCDE .所以:DH 是AD 在底面BCDE 上的射影.易证:CE ⊥DH ,由三垂线定理:AD ⊥CE . (2)【①所求二面角C -AD -E 的棱是AD ;②两个半平面分别是CAD 、EAD ;③图形特征是:夹在二面角C -AD -E 内的一条直线CE ⊥棱AD 】
解 作CF ⊥AD 于F ,∵AD ⊥CE ,∴AD ⊥面EFC .所以:EF ⊥AD ,CF ⊥AD ,∴∠EFC 是二面角C -AD -E 的平面角【找、作、证→算】.
①AH =DH =√3,得AD =√6,得AE =√6; ②由此△ACD 为Rt △,∴CF ·AD =AC ·DC ; ③S ADE =
12
12
DE ·A2=AD ·EF .从而求出EF 、CF .
④在△EFC 中,用余弦定理,求∠EFC .
评注:①夹在二面角E -AD -C 内的一条直线CE 垂直于棱,是作二面角的平面角的依托;②空间图形的分解,是基本功;
3.模式三:夹在二面角内的一个平面⊥其中的一个半平面. 题3(08、湖南、理17) :四棱锥P -ABCD 的底面是边长为1的菱形,∠BCD =600,E 是CD 的中点,PA ⊥底面ABCD ,PA =2.(1
)
求证:平面PBE ⊥平面PAB ;(2)求平面PAD 和平面PBE 所成锐二面角的大小. (1)证明:【证明α经过β的一条垂线】 B E ⊥CD ,CD ∥AB ,所以:BE ⊥AB .又BE ⊥PA , 所以:BE ⊥面PAB .又BE 在平面PBE 内,∴ 平面PBE ⊥平面PAB ;
(2)解 【无棱二面角PAD -PBE 】 设BE 与AD 交于F ,
由(1)知:面PA B ⊥二面角A -PF -B 的一个半平面PBF .
作A G ⊥PB 于G ,则PF ⊥AG .
作GH ⊥PF 于H ,则PF ⊥面AHG .∴∠AHG 是二面角A -PF -B 的平面角.在R t △AGH 中,AH =2,AG =
25
5
,所
以sin ∠AHG =AG :AH =.
评注:①无棱二面角的棱的作法,有两条依据;②凭借“夹在二面角A -PF -B 内的一个平面PAB ⊥其中的一个半平面PBF ”,作出二面角的平面角;③如果在图形中,出现“三条直线两两垂直”,可考虑向量法.
高考试题巩固练习
1.(08、陕西、文19) :三棱锥被平行于底面ABC 的平面截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =900,A 1A ⊥平面ABC ,A 1A =√3,AB =AC =2A 1C 1=2,D 为BC 的中点.(1
)求
证:平面A 1AD ⊥平面BCC 1B 1;
(1)证明:BC ⊥AD ,BC ⊥A 1A ,所以:
BC ⊥面A 1AD .又∵BC 在平面BCC 1B 1内,所以: 平面A 1AD ⊥平面BCC 1B 1;
(2)求二面角A -CC 1-B 的大小。
【①找二面角A -CC 1-B 的棱;②找半平面;③找图形特点】 【存在一个半平面ABC 与二面角的半平面A -CC 1-A 1垂直】 解:过A 作AE ⊥CC 1于E ,连BE 。
∵BA ⊥面CC 1A 1A ,CC 1在平面CC 1A 1A 内,∴BA ⊥C 1C 。
又CC 1⊥AE ,∴CC 1⊥BE ⇒∠AEB 是二面角A -CC 1-B 的平面角。 在Rt ΔABE 中,tan ∠
AEB=
A B A E
==3
所以:二面角A -CC 1-B 的平面角为
3
.
2.(09、全国2)如图,直三棱柱ABC -A 1B 1C 1中,A B ⊥AC ,DE 分别为AA 1、B 1C 的中点,D E ⊥平面BCC 1.(1)求证:AB =AC ;(2)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小.
解:(1)连结BE ,∵ABC -A 1B 1C 1为直三棱柱,∴∠B 1BC =90. ∵E 为B 1C 的中点,∴BE =CE(矩形的对角线相等) .
又D E ⊥平面BCC 1,∴BD =CD (射影相等的两条斜线段相等). 而D A ⊥平面ABC ,
∴AB =AC (相等的斜线段的射影相等).
(2)求B 1C 与平面BCD 所成的线面角,只需求点B 1到面BCD 的距离即可.
作A G ⊥BD 于G ,连GC ,则G C ⊥BD ,∠AGC 为二面角A -BD -C 的平面角.∠AGC =600.不妨设AC =23,则AG =2,GC =4.在R t △ABD 中,由AD ·AB =BD ·AG ,易得AD =√6.
设点B 1到面BDC 的距离为h ,B 1C 与平面BCD 所成的角为α. 由V D -B 1BC =V B 1-BDC ,∴
13
13
S ∆B 1BC ·DE =S ∆BDC ·h ,可求得
h
=BC =2√6,∴B 1C =4√3.
所以:sin α=h :B 1C
=4√3=1/2.α=30.
3. (09、重庆)如图,在四棱锥S -A B C D 中,A D ∥B C 且A D ⊥C D ;平面C S D ⊥平面A B C D ,CS ⊥DS , CS =2AD =2;E 为B S
的中点,
C E =
AS =
(1)点A 到平面B C S 的距离;
解:(1)【A 点到平面B C S 的距离=D点到平面B C S 的距离=DS】 在R t ∆
A D S 中,DS =
=
=∴点A 到平面B C S 的距离
。【(2)二面角E -C D -A 的大小】
(2)过E 作EG ⊥CD , 交C D 于点G ,又过G 点作G H ⊥C D , 交AB 于H ,故∠
为
二面角E -C D -A 的平面角,记为θ,过E 点作EF//BC,交C S 于点F, 连结GF, 因平面
π
ABCD ⊥平面CSD , GH ⊥CD , 易知GH ⊥GF , 故θ=-∠E G F .
2
由于E 为BS 边中点⇒F 为CS 的中点⇒E F =1。
CD =
=
=
E F F G
⇒G F =
,
π
3
在R t ∆
F E G 中,tan E G F =的大小为θ=
π
6
=可得∠E G F =,故所求二面角
。
4(09、湖北、文)四棱锥P -ABC 的底面是正方形,P D ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AE C ⊥平面PDB ;(2)当PD =√2AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小. 解:(1)∵四边形ABCD 是正方形,∴AC ⊥BD , ∵P D ⊥底面ABCD ,∴PD ⊥AC ,∴AC ⊥平面PDB , ∴平面AE C ⊥平面PDB ;
(2)设AC∩BD=O,连接OE , 由(Ⅰ)知AC ⊥平面PDB 于O ,∴∠AEO 为AE 与平面PDB 所的角。
∵O ,E 分别为DB 、PB 的中点, ∴OE//PD,OE =
12
PD 。
1又∵P D ⊥面ABCD , ∴OE ⊥底面ABCD ,OE ⊥AO ,在Rt △AOE 中,OE =PD =
2AB
=AO , ∴∠AOE =450
。
即AE 与平面PDB 所成的角的大小为450
.
5.(09、安徽)如图,四棱锥F -ABCD 的底面ABCD 是菱形,其对角线AC=2,
BD=
,AE 、CF 都与平面ABCD 垂直,AE=1,CF=2。
(1)求二面角B -A F -D 的大小; 解:(I )连接AC 、BD 交于菱形的中心O ,过O 作OG ⊥AF ,G 为垂足.连接BG 、DG .由BD ⊥AC ,BD ⊥CF 得BD ⊥平面ACF ,故BD ⊥AF .
2
2
于是AF ⊥平面BGD ,所以BG ⊥AF ,DG ⊥AF ,∠BGD 为二面角B -AF -D 的平面角. 由F C ⊥A C , FC =AC =2,得∠F A C =
π
4
,O G =
2
。
由O B ⊥O G , O B =O D =
2
,得∠B G D =2∠B G O =
π
2
。
【(2)求四棱锥E -ABCD 与四棱锥F -ABCD 公共部分的体积. 】
解:连EB 、EC 、ED ,设直线AF 与直线CE 相交于点H ,则四棱锥E-ABCD 与四棱锥F-ABCD 的公共部分为四棱锥H -ABCD . 过H 作HP ⊥平面ABCD ,P 为垂足. 因为EA ⊥平面ABCD ,FC ⊥平面ABCD ,,所以平面ACFE ⊥平面ABCD ,从而P ∈AC ,HP ⊥AC . 由
HP CF ==AP AC
,
H P A E HP CF
P C A C H P
,两式相加:
=AP AC
+P C A C
=1⇒
+
A E 23
得H P =.
12
A C ⋅B D =
又因为S 菱形A B C D =
故四棱锥H-ABCD
的体积V =
13
S 菱形ABC D ⋅H P =
9
6.在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。(1)证明:直线EE 1//平面FCC 1;
解:(1)在直四棱柱ABCD-A 1B 1C 1D 1中,取A 1B 1的中点F 1, 连接A 1D ,C 1F 1,CF 1,因为AB=4, CD=2,且AB//CD, //
所以CD=A 1F 1,A 1F 1CD 为平行四边形,所以CF 1//A1D ,
又因为E 、E 1分别是棱AD 、AA 1的中点,所以EE 1//A1D , 所以CF 1//EE1,又因为EE 1⊄平面FCC 1,C F 1⊂平面FCC 1, 所以直线EE 1//平面FCC 1. 【(2)求二面角B-FC 1-C 的余弦值】
(2)因为AB=4, BC=CD=2, F是棱AB 的中点, 所以BF=BC=CF,△BCF 为正三角形。 取CF 的中点O, 则OB ⊥CF, 又因为直四棱柱ABCD-A 1B 1C 1D 1中,CC 1⊥平面ABCD, 所以CC 1⊥BO, 所以OB ⊥平面CC 1F, 过O 在平面CC 1F 内作OP ⊥C 1F, 垂足为P , 连接BP , 则∠OPB 为二面角B-FC 1-C 的一个平面角, 在△BCF 为正三角形中
, O B =
O P C C 1
O F C 1F
在Rt △CC 1F 中, △OPF ∽△CC 1F ,∵
=
∴O P =
2=
2
。
在Rt △OPF 中
, BP ==
=
2
, cos ∠O PB =
O P BP
=
=, 所以
72
二面角B-FC 1-C
7
。
一、基本知识
1.二面角图形的识别与思考途径:①找二面角的棱;②找二面角的两个半平面;③观察是否有直线⊥半平面;④观察是否有平面⊥半平面;⑤观察是否有直线⊥棱. 2.立体几何中,几种常用的平面图形的计算:
① 4:2:1()矩形中的垂直;②Rt Δ中,斜边上的高的计算;③ RtΔ中,直角边上一点向斜边引垂线,垂线段的计算.
3.若∠POA =∠POB ,则PO 在α内的射影是∠AOB 的平分线;
二、求直线与平面所成的角、求二面角的三种基本模式:
1.模式一:夹在二面角内的一条直线垂直于其中的一个半平面.
题1(09、湖北、理)如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =2a ,AD =√2a, 点E 是SD 上一点,且DE =λa(0<λ≤2) .(1)求证:对任意的λ∈(0,2],都有AC ⊥BE ;(2)设二面角C -AE -D 的大小为θ,直线BE 与平面ABCD 所成的角为Φ.若tan θ·tan Φ=1,求λ的值.
解:(1)AC ⊥BD, AC⊥SD ,所以AC ⊥平面SBD ,又BE 在平面SBD 内,∴AC ⊥BE (图1); 【二面角的识图:①找二面角的棱;②找二面角的两个半平面;③找图形特征(二面角的三种模式特征)】 【斜线与平面所成的角的识图:①找斜线;②找垂线;③找射影】 (2)图2:【夹在二面角C -AE -D 的直线CD ⊥半平面ADE 】
作DH ⊥AE 于H ,由三垂线定理知:CH ⊥AE ,所以∠CHD =θ,在Rt ΔADE 中,DH =
DE ·DA AE
=
λa 2a λa +2a
2
2
2
=
2·λa
,tan θ=CD :DH =2a :
λ+2
2
2·λa
=
λ+2λ
2
.
λa
2a
λ+2
2
又∠EBD =Φ,则tan Φ=DE :BD ==
λ
2
.由tan θ·tan
Φ=1,有
λ+2λ
2
·
λ
2
=1.
解得:λ=√2.
评注:①本题把“平面的斜线与平面所成的角”、“二面
角”融合为一道题,结合08、湖北考题,可以估测湖北考
题方向及武汉市2、4月模拟考题方向;②解答这类问题,首先要认识图形,掌握“平面的斜线与平面所成的角”、“二面角”的识图方法;③本题的图形模式是最简单的,“平面的斜线与平面所成的角”中,有一条直线⊥平面;④“二面角” 的图形中,夹在二面角内的一条直线垂直于其中的一个半平面.
2.模式二:夹在二面角内的一条直线垂直于棱.
题2(08、全国Ⅰ)四棱锥A -BCDE 中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,BC =2,CD =√2,AB =AC .(1)求证:AD ⊥CE ;(2)设侧面ABC 为等边三角形,求二面角C -AD -E 的大小.
(1) 证明:作AH ⊥BC 于H ,
则AH ⊥底面BCDE .所以:DH 是AD 在底面BCDE 上的射影.易证:CE ⊥DH ,由三垂线定理:AD ⊥CE . (2)【①所求二面角C -AD -E 的棱是AD ;②两个半平面分别是CAD 、EAD ;③图形特征是:夹在二面角C -AD -E 内的一条直线CE ⊥棱AD 】
解 作CF ⊥AD 于F ,∵AD ⊥CE ,∴AD ⊥面EFC .所以:EF ⊥AD ,CF ⊥AD ,∴∠EFC 是二面角C -AD -E 的平面角【找、作、证→算】.
①AH =DH =√3,得AD =√6,得AE =√6; ②由此△ACD 为Rt △,∴CF ·AD =AC ·DC ; ③S ADE =
12
12
DE ·A2=AD ·EF .从而求出EF 、CF .
④在△EFC 中,用余弦定理,求∠EFC .
评注:①夹在二面角E -AD -C 内的一条直线CE 垂直于棱,是作二面角的平面角的依托;②空间图形的分解,是基本功;
3.模式三:夹在二面角内的一个平面⊥其中的一个半平面. 题3(08、湖南、理17) :四棱锥P -ABCD 的底面是边长为1的菱形,∠BCD =600,E 是CD 的中点,PA ⊥底面ABCD ,PA =2.(1
)
求证:平面PBE ⊥平面PAB ;(2)求平面PAD 和平面PBE 所成锐二面角的大小. (1)证明:【证明α经过β的一条垂线】 B E ⊥CD ,CD ∥AB ,所以:BE ⊥AB .又BE ⊥PA , 所以:BE ⊥面PAB .又BE 在平面PBE 内,∴ 平面PBE ⊥平面PAB ;
(2)解 【无棱二面角PAD -PBE 】 设BE 与AD 交于F ,
由(1)知:面PA B ⊥二面角A -PF -B 的一个半平面PBF .
作A G ⊥PB 于G ,则PF ⊥AG .
作GH ⊥PF 于H ,则PF ⊥面AHG .∴∠AHG 是二面角A -PF -B 的平面角.在R t △AGH 中,AH =2,AG =
25
5
,所
以sin ∠AHG =AG :AH =.
评注:①无棱二面角的棱的作法,有两条依据;②凭借“夹在二面角A -PF -B 内的一个平面PAB ⊥其中的一个半平面PBF ”,作出二面角的平面角;③如果在图形中,出现“三条直线两两垂直”,可考虑向量法.
高考试题巩固练习
1.(08、陕西、文19) :三棱锥被平行于底面ABC 的平面截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =900,A 1A ⊥平面ABC ,A 1A =√3,AB =AC =2A 1C 1=2,D 为BC 的中点.(1
)求
证:平面A 1AD ⊥平面BCC 1B 1;
(1)证明:BC ⊥AD ,BC ⊥A 1A ,所以:
BC ⊥面A 1AD .又∵BC 在平面BCC 1B 1内,所以: 平面A 1AD ⊥平面BCC 1B 1;
(2)求二面角A -CC 1-B 的大小。
【①找二面角A -CC 1-B 的棱;②找半平面;③找图形特点】 【存在一个半平面ABC 与二面角的半平面A -CC 1-A 1垂直】 解:过A 作AE ⊥CC 1于E ,连BE 。
∵BA ⊥面CC 1A 1A ,CC 1在平面CC 1A 1A 内,∴BA ⊥C 1C 。
又CC 1⊥AE ,∴CC 1⊥BE ⇒∠AEB 是二面角A -CC 1-B 的平面角。 在Rt ΔABE 中,tan ∠
AEB=
A B A E
==3
所以:二面角A -CC 1-B 的平面角为
3
.
2.(09、全国2)如图,直三棱柱ABC -A 1B 1C 1中,A B ⊥AC ,DE 分别为AA 1、B 1C 的中点,D E ⊥平面BCC 1.(1)求证:AB =AC ;(2)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小.
解:(1)连结BE ,∵ABC -A 1B 1C 1为直三棱柱,∴∠B 1BC =90. ∵E 为B 1C 的中点,∴BE =CE(矩形的对角线相等) .
又D E ⊥平面BCC 1,∴BD =CD (射影相等的两条斜线段相等). 而D A ⊥平面ABC ,
∴AB =AC (相等的斜线段的射影相等).
(2)求B 1C 与平面BCD 所成的线面角,只需求点B 1到面BCD 的距离即可.
作A G ⊥BD 于G ,连GC ,则G C ⊥BD ,∠AGC 为二面角A -BD -C 的平面角.∠AGC =600.不妨设AC =23,则AG =2,GC =4.在R t △ABD 中,由AD ·AB =BD ·AG ,易得AD =√6.
设点B 1到面BDC 的距离为h ,B 1C 与平面BCD 所成的角为α. 由V D -B 1BC =V B 1-BDC ,∴
13
13
S ∆B 1BC ·DE =S ∆BDC ·h ,可求得
h
=BC =2√6,∴B 1C =4√3.
所以:sin α=h :B 1C
=4√3=1/2.α=30.
3. (09、重庆)如图,在四棱锥S -A B C D 中,A D ∥B C 且A D ⊥C D ;平面C S D ⊥平面A B C D ,CS ⊥DS , CS =2AD =2;E 为B S
的中点,
C E =
AS =
(1)点A 到平面B C S 的距离;
解:(1)【A 点到平面B C S 的距离=D点到平面B C S 的距离=DS】 在R t ∆
A D S 中,DS =
=
=∴点A 到平面B C S 的距离
。【(2)二面角E -C D -A 的大小】
(2)过E 作EG ⊥CD , 交C D 于点G ,又过G 点作G H ⊥C D , 交AB 于H ,故∠
为
二面角E -C D -A 的平面角,记为θ,过E 点作EF//BC,交C S 于点F, 连结GF, 因平面
π
ABCD ⊥平面CSD , GH ⊥CD , 易知GH ⊥GF , 故θ=-∠E G F .
2
由于E 为BS 边中点⇒F 为CS 的中点⇒E F =1。
CD =
=
=
E F F G
⇒G F =
,
π
3
在R t ∆
F E G 中,tan E G F =的大小为θ=
π
6
=可得∠E G F =,故所求二面角
。
4(09、湖北、文)四棱锥P -ABC 的底面是正方形,P D ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AE C ⊥平面PDB ;(2)当PD =√2AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小. 解:(1)∵四边形ABCD 是正方形,∴AC ⊥BD , ∵P D ⊥底面ABCD ,∴PD ⊥AC ,∴AC ⊥平面PDB , ∴平面AE C ⊥平面PDB ;
(2)设AC∩BD=O,连接OE , 由(Ⅰ)知AC ⊥平面PDB 于O ,∴∠AEO 为AE 与平面PDB 所的角。
∵O ,E 分别为DB 、PB 的中点, ∴OE//PD,OE =
12
PD 。
1又∵P D ⊥面ABCD , ∴OE ⊥底面ABCD ,OE ⊥AO ,在Rt △AOE 中,OE =PD =
2AB
=AO , ∴∠AOE =450
。
即AE 与平面PDB 所成的角的大小为450
.
5.(09、安徽)如图,四棱锥F -ABCD 的底面ABCD 是菱形,其对角线AC=2,
BD=
,AE 、CF 都与平面ABCD 垂直,AE=1,CF=2。
(1)求二面角B -A F -D 的大小; 解:(I )连接AC 、BD 交于菱形的中心O ,过O 作OG ⊥AF ,G 为垂足.连接BG 、DG .由BD ⊥AC ,BD ⊥CF 得BD ⊥平面ACF ,故BD ⊥AF .
2
2
于是AF ⊥平面BGD ,所以BG ⊥AF ,DG ⊥AF ,∠BGD 为二面角B -AF -D 的平面角. 由F C ⊥A C , FC =AC =2,得∠F A C =
π
4
,O G =
2
。
由O B ⊥O G , O B =O D =
2
,得∠B G D =2∠B G O =
π
2
。
【(2)求四棱锥E -ABCD 与四棱锥F -ABCD 公共部分的体积. 】
解:连EB 、EC 、ED ,设直线AF 与直线CE 相交于点H ,则四棱锥E-ABCD 与四棱锥F-ABCD 的公共部分为四棱锥H -ABCD . 过H 作HP ⊥平面ABCD ,P 为垂足. 因为EA ⊥平面ABCD ,FC ⊥平面ABCD ,,所以平面ACFE ⊥平面ABCD ,从而P ∈AC ,HP ⊥AC . 由
HP CF ==AP AC
,
H P A E HP CF
P C A C H P
,两式相加:
=AP AC
+P C A C
=1⇒
+
A E 23
得H P =.
12
A C ⋅B D =
又因为S 菱形A B C D =
故四棱锥H-ABCD
的体积V =
13
S 菱形ABC D ⋅H P =
9
6.在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。(1)证明:直线EE 1//平面FCC 1;
解:(1)在直四棱柱ABCD-A 1B 1C 1D 1中,取A 1B 1的中点F 1, 连接A 1D ,C 1F 1,CF 1,因为AB=4, CD=2,且AB//CD, //
所以CD=A 1F 1,A 1F 1CD 为平行四边形,所以CF 1//A1D ,
又因为E 、E 1分别是棱AD 、AA 1的中点,所以EE 1//A1D , 所以CF 1//EE1,又因为EE 1⊄平面FCC 1,C F 1⊂平面FCC 1, 所以直线EE 1//平面FCC 1. 【(2)求二面角B-FC 1-C 的余弦值】
(2)因为AB=4, BC=CD=2, F是棱AB 的中点, 所以BF=BC=CF,△BCF 为正三角形。 取CF 的中点O, 则OB ⊥CF, 又因为直四棱柱ABCD-A 1B 1C 1D 1中,CC 1⊥平面ABCD, 所以CC 1⊥BO, 所以OB ⊥平面CC 1F, 过O 在平面CC 1F 内作OP ⊥C 1F, 垂足为P , 连接BP , 则∠OPB 为二面角B-FC 1-C 的一个平面角, 在△BCF 为正三角形中
, O B =
O P C C 1
O F C 1F
在Rt △CC 1F 中, △OPF ∽△CC 1F ,∵
=
∴O P =
2=
2
。
在Rt △OPF 中
, BP ==
=
2
, cos ∠O PB =
O P BP
=
=, 所以
72
二面角B-FC 1-C
7
。
深圳市海测科技有限公司
2018-06-11 广告
2018-06-11 广告
AUMA,德国经济展览和博览会委员会。德国经济展览和博览会委员会在联邦经济与技术部和消费者保护、营养与农业部协助下,为德国官方参与国外展会计划做筹划准备工作。在该计划范围内,德国政府为德国企业去国外展会共同参展提供可观的经济支持,同时也为德...
点击进入详情页
本回答由深圳市海测科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询