人教版六年级下册数学《用比例解决问题》教案
《用比例解决问题》教案(一)
教学目标
1、知识与技能目标:
(1)学生能正确判断应用题中涉及的量成什么比例关系,能正确利用正反比例的意义正确解答实际问题。
(2)让学生掌握用比例知识解决问题的解题步骤和方法。
(3)进一步提高学生运用已学知识进行分析、判断和推理的能力。
2、过程与方法目标:
经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。
3、情感态度和价值观目标:
感受数学知识与实际生活的密切联系,发展学生探究解决问题策略的能力,体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。
教学重难点
教学重点:用比例知识解决实际问题
教学难点:能够正确分析题中的比例关系,列出方程
教学工具
ppt课件
教学过程
一、复习旧知,导入新课。
1、师:同学们,前几节课我们刚刚学习了正反比例的意义,首先我们通过一组练习来复习一下。
2、课件出示习题。
指名学生回答,并说明理由。
3、揭题。
师:这节课,我们就来学习用正反比例的知识解决问题。
二、探究体验,获取新知。
(一)、教学例5.
师:我们先看看李奶奶遇到了什么问题?(课件出示例5)
1、收集信息,理解题意。
师:从图中你获得了哪些数学信息?
(指名学生汇报)
2、组织学生用学过的方法自主解决问题。
师:你能用以前学过的方法解答吗?试一试。
①学生尝试用自己喜欢的方法解答,教师巡视了解情况。
②指名学生汇报解题方法,并让学生说一说是怎样想的。
生可能的答案有:28÷8×10=35(元) 10÷8×28=35(元)
③教师指出也可用比例的知识解答。
3、用比例知识解决问题。
(1)学生独立思考和讨论问题。
师:这道题还可以用比例的知识来解答,怎样用比例的知识解答呢?请同学们先思考和讨论以下问题。(课件出示)
要求:先独立思考后,再小组内交流讨论。
①题中有哪两种相关联的量?
②哪个量是一定的?
③它们成什么比例关系?你是依据什么判断的?
④根据这个比例关系,你能列出等式吗?
(2)学生交流讨论后,指名学生汇报,并引导学生概括出等量关系式。
(3)学生尝试用正比例知识解决问题。
师:你能完整的把这道题用比例知识解答吗?
学生尝试用比例知识解答,教师巡视了解情况,知道个别有困难的学生。
(4)指名学生板演过程,集体交流订正。教师提醒学生要检验。
(5)师:你认为在解题过程中有什么需要注意的地方要提醒给大家呢?(指名学生回答)
4.小结。
思考以下问题:
用比例知识解决这个问题的关键是什么?
找到不变的量,只要两个量的比值一定,就可以用正比例关系解答。
5.习题巩固
我会分析:(课件出示)
学生独立审题并解答。集体订正。
(二)教学例6.
1.课件出示例6.
师:你能根据刚才总结的经验试着解决下面的问题吗?
2.课件出示自学提示:
(1)题中有哪两种相关联的量?
(2)哪个量是一定的?
(3)它们成什么比例关系?
(4)根据比例关系列出方程并解答。
学生思考后独立解答,教师巡视了解情况,并指名板演。
3.集体评讲。
4小结。
思考:
1.你认为用比例解决问题的关键是什么?
指名学生回答他生补充,课件出示总结。
2.用正反比例解决问题的步骤有哪些?
(1)学生先独立思考后,小组交流,指名汇报。
(2)师生总结。(课件展示)
①找(找相关联的量)
②判(相关联的量成什么比例)
③列(列出方程)
④解(解方程)
⑤验(检验计算结果)
三、习题巩固。
基础练习:只列式不计算。
1.运动会上,六年级同学进行大型体操表演,每行站20人,可以站18行;若每行站40人,可以站χ行?
2.小兰身高1.5米,她的影长是2.4米,如果同一时间、同一地点测得一棵树的影长为4米,这棵树高χ米。
3.小华读一本书,每天读10页,30天可以读完;如果每天多读5页,χ天可以读完。
(学生先独立解答后,指名回答,并讲解列式的依据。)
拓展练习:
修一条路,计划每天修90米,40天完成,实际5天修了300米,照这样计算,多少天可以完成任务?
(学生先独立解答,师巡视指导,找不同做法的同学回答,他生订正)
四、作业
教材63页练习十一4、5、7、8题。
五、课堂小结。
通过本节课的学习,你有哪些收获?
指名学生说一说本节课的收获,他生补充。
板书
用比例解决问题
例5 解:设李奶奶家上个月的水 例6 解:设原来5天的用电量
费是x元。 现在可以用x天。
28:8=x:10 25x=100×5
8x=28×10 x=100×5÷25
X=35 x=20
答:李奶奶家上个月水费 答:原来5天的用电量现在
是35元。 可以用20天。
《用比例解决问题》教案(二)
教学目标
1:能正确判断问题中数量之间的比例关系。
2:正确利用比例知识解决问题。
3:通过策略多样化的训练,培养学生的发散性思维。
教学重难点
教学重点:能用正、反比例知识解决实际问题。
教学难点:正确分析题中的比例关系,列出方程。
教学工具
课件
教学过程
一、复习铺垫,引入新课。
师:同学们,我们先来回忆一下有关正、反比例的知识。
师:判断下面每题中的两种量成什么比例?(课件出示)
(1)速度一定,路程和时间. (2)路程一定,速度和时间. (3)单价一定,总价和数量. (4)每小时耕地的公顷数一定, 耕地的总公顷数和时间. ( 5)全校学生做操,每行站的人数和站的行数. 【设计意图】 通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。
师:(对于学生回答教师给予肯定)看样子同学们掌握的很不错,前面我们学习了比例、正比例、反比例的意义,还学习了解比例。这节课我们就应用比例的知识解决生活中的一些实际问题。板书课题《用比例解决问题》。
二、探究新知
1:(一)用正比例的知识解决问题(探究例5)
过渡语:看,李大妈和张奶奶在讨论什么问题,想不想去看看!(出示情境图)
师:这幅图中你能知道哪些信息?你能不能运用学过的方法来帮李奶奶解决这个问题?
学生自己解答,然后交流解答方法。
2:师:像这样的问题也可以用比例的知识来解决。
出示自学提纲。
(1)题目中有几个量。 (2) 谁和谁成什么比例关系?你是怎么判断的? (3 )哪个量是固定不变的。 (4) 根据比例关系,列出等式。
3:学生交流自学结果,相互补充,呈现一个完整的解答过程。
师:谁来说说你是怎样用比例知识来解决问题的?
根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。
4、师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法。
5即时练习
过渡语:同学们帮助李奶奶解决问题,我们一起去看看王大爷家又发生了什么事情呢?
出示对话情景。
师:观察帮助要王大爷的问题和帮助李奶奶的事对比,你有什么发现?
在学生的交流中逐步认识到这道题与例5相比,条件和问题改变了,但题目中水费和用水的吨数的正比例关系没变。
小结:用正比例解决问题的关键是找到不变量,只要两个量的比值一定,就可以用正比例关系解答。
(二)用反比例的知识解决问题(学习P62例6)
师:解决了生活中水的问题,下面我们一起看看生活的电中蕴含着什么数学问题。
1课件出示情境图,了解题目条件与问题。
生:独立解决,并在小组交流解题思路和计算方法。
学生汇报解题思路。
过渡语:像这样的问题也能用比例的方法解决。请同学们仿照正比例的解题方法,并参照课本62页的内容,自学例6.
生:交流汇报解题思路。
师:谁来和大家分享一下你们的结果。
师:(教师手指25x=100×5,x=20。)为什么这样列式?根据是什么?
生汇报:因为总的用电量一定,所以用电天数和每天的用电量成反比例.也就是说,每天的用电量和天数的乘积相等。
2.即时练习
课件出示:现在30天的用电量原来只够用多少天?
师:会解决吗?
生:独立解决,交流订正。
小结:解决这个问题的关键是找到哪两个量的乘积一定。只要两个量的乘积一定,就可以用反比例关系来解答。 3:总结用比例解决问题的几个步骤:
(1) 梳理相关联的两种量。
(2) 判断相关联的两种量成什么比例。
(3) 解比例。
(4) 用自己熟练的方法来检验。
三:巩固练习
1:小明买4支圆珠笔用6元。小刚想买3支同样的圆珠笔,要用多少钱?(要求用比例知识解)
学生自己独立解决问题并说说原因。
学情预设:小明买的是同一种圆珠笔,所以圆珠笔的单价不变。那么买的支数和所用的钱数成正比例关系,所以用正比例关系能解决这个问题。
2:学校小商店有两种圆珠笔。小明带的钱刚好可以买4支单价是1.5元的,如果他只买单价是2元的,可以买多少支。
第2题,用反比例关系可以解决这个问题。
设计意图:再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。
四:课堂小结
通过这节课的学习,你有哪些收获?谈谈你的感受。
板书
用比例解决问题
解:设李奶奶家上个月的水费是x元。 解:设原来5天的用电量现在可以用x天。
X:10=28:8 25x=100×5
8x=28×10 x=500÷25
X=35 x=20
答:李奶奶家上个月的水费是35元。 答:原来5天的用电量现在可以用20天