0的极限是什么?
0×∞的极限: 设x=0+,则1/x→+∞。 则求lim(x→0)x×1/x=1.。
在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点xN+1,xN+2(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a而如果一个数列收敛于a,则这两个条件都能满足。
换句话说,如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。
∞的用途:
在叙述一个区间时,只有上限,则是(-∞,x](x∈R);只有下限,则是[x,+∞)(x∈R);既没有上限又没有下限,则是(-∞,+∞)。
在高等数学中,规定:x为实数,当x>0时,x÷0=+∞;当x<0时,x÷0=-∞;当x=0时,x÷0无意义。
+∞与实数加、减、乘、除、乘方、开方运算,结果永远是+∞;-∞与实数加、减、乘、除、乘方、开方运算,结果永远是-∞。
+∞在某种意义上可以表达为x+1,因为x是表达任意实数或虚数的符号,而无限一定大于任何任意实数或虚数,而0.999...999(0.9的无限循环)=1的悖论显示无限或许是无限大到能涉及更高一个层面因为0.9的无限循环是小于一的小数却等于1。