矩阵的秩与什么有关?

 我来答
清风聊生活
高粉答主

2023-05-23 · 醉心答题,欢迎关注
知道小有建树答主
回答量:3066
采纳率:100%
帮助的人:47.4万
展开全部

根据线性方程组有解判别定理,齐次线性方程组中系数矩阵的秩与增广矩阵的秩相等,所以齐次线性方程组一定有解(至少有一个零解)。

若齐次线性方程组中方程的个数小于未知数的个数,即系数矩阵的秩小于未知数的个数,则方程组有无穷多解(即有非零解)。

如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。

每一个线性空间都有一个基。

对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

矩阵非奇异(可逆)当且仅当它的行列式不为零。

矩阵非奇异当且仅当它代表的线性变换是个自同构。

矩阵半正定当且仅当它的每个特征值大于或等于零。

矩阵正定当且仅当它的每个特征值都大于零。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式