计时电流法的产生历史

 我来答
fengteng1314
2016-07-17 · 知道合伙人教育行家
fengteng1314
知道合伙人教育行家
采纳数:13795 获赞数:207229
我个人对数学等理科方面比较有兴趣,乐意帮助大家解答关于数学等理科方面的问题

向TA提问 私信TA
展开全部

  一种研究电极过程动力学的电化学分析法和技术。在电解池上突然施加一个恒电位,足够使溶液中某种电活性物质(或称去极剂)发生氧化或还原反应,记录电流与时间的变化,得到电流-时间曲线,故称计时电流法.

  1922年J.海洛夫斯基在发明极谱法的同时重新强调了计时电流法,它可以采用极谱仪的基本线路。但要连接快速记录仪或示波器,不用滴汞电极,而用静止的悬汞、汞池或铂、金、石墨等电极,也不搅动溶液。在大量惰性电解质存在下,传质过程主要是扩散。

  1902年美国F.G.科特雷耳根据扩散定律和拉普拉斯变换,对一个平面电极上的线性扩散作了数学推导,得到科特雷耳方程:公式:

  式中i1为极限电流;F为法拉第常数;n为电极反应的电子转移数;A为电极面积;c0为活性物在溶液中的初始摩尔浓度;D为活性物的扩散系数;t为电解时间。

  当时间趋向于无穷大,电流就趋近于零,这是因为电极表面活性物的浓度由于电解而逐渐减小的结果。利用i1或i1t1/2与c0成正比的关系,可用于定量分析,但由于此法不如极谱法准确和重现性好,所以实际上很少应用。因为是一个常数,所以i1t1/2对t作图得一不随t变化的直线。

  科特雷耳方程适用于扩散过程(图中曲线1),如果电极反应不可逆或伴随化学反应时,则动力电流ik随时间的变化见图中曲线2,它受反应速率常数的控制。

  计时电流法常用于电化学研究,即电子转移动力学研究。近年来还有采用两次电位突跃的方法,称为双电位阶的计时电流法。第一次突然加一电位,使发生电极反应,经很短时间的电解,又跃回到原来的电位或另一电位处,此时原先的电极反应产物又转变为它的原始状态,从而可以在i-t曲线上更好地观察动力学的反应过程;并从科特雷耳方程出发,考虑反应速率,进行数学推导和作图,求出反应速率常数。

  参考自百度百科:http://baike.baidu.com/view/691289.htm

GamryRaman
2023-06-12 广告
恒电位仪测量极化曲线的原理是通过测量电极在不同电位下的电流变化,来确定电极的极化程度和电位值。具体来说,恒电位仪会将电极依次恒定在不同的数值上,然后通过测量对应于各电位下的电流来计算电极的极化程度和电位值。在测量过程中,为了尽可能接近体系的... 点击进入详情页
本回答由GamryRaman提供
小周高等教育在线答疑
高粉答主

2016-06-20 · 专业高等教育30年~~~
小周高等教育在线答疑
采纳数:7473 获赞数:274987

向TA提问 私信TA
展开全部

  计时电流法,一种电化学方法。向电化学体系的工作电极施加单电位阶跃或双电位阶跃后,测量电流响应与时间的函数关系。计时电流法的产生历史:

  1922年J.海洛夫斯基在发明极谱法的同时重新强调了计时电流法,它可以采用极谱仪的基本线路。但要连接快速记录仪或示波器,不用滴汞电极,而用静止的悬汞、汞池或铂、金、石墨等电极,也不搅动溶液。在大量惰性电解质存在下,传质过程主要是扩散。

  1902年美国F.G.科特雷耳根据扩散定律和拉普拉斯变换,对一个平面电极上的线性扩散作了数学推导,得到科特雷耳方程:

  式中i1为极限电流;F为法拉第常数;n为电极反应的电子转移数;A为电极面积;c0为活性物在溶液中的初始摩尔浓度;D为活性物的扩散系数;t为电解时间。

  当时间趋向于无穷大,电流就趋近于零,这是因为电极表面活性物的浓度由于电解而逐渐减小的结果。利用i1或i1t1/2与c0成正比的关系,可用于定量分析,但由于此法不如极谱法准确和重现性好,所以实际上很少应用。因为是一个常数,所以i1t1/2对t作图得一不随t变化的直线。

  计时电流法常用于电化学研究,即电子转移动力学研究。近年来还有采用两次电位突跃的方法,称为双电位阶的计时电流法。第一次突然加一电位,使发生电极反应,经很短时间的电解,又跃回到原来的电位或另一电位处,此时原先的电极反应产物又转变为它的原始状态,从而可以在i-t曲线上更好地观察动力学的反应过程;并从科特雷耳方程出发,考虑反应速率,进行数学推导和作图,求出反应速率常数。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
开秋梵顺Tl
2016-05-31 · TA获得超过142个赞
知道答主
回答量:189
采纳率:100%
帮助的人:61.5万
展开全部

1922年J.海洛夫斯基在发明极谱法的同时重新强调了计时电流法,它可以采用极谱仪的基本线路。但要连接快速记录仪或示波器,不用滴汞电极,而用静止的悬汞、汞池或铂、金、石墨等电极,也不搅动溶液。在大量惰性电解质存在下,传质过程主要是扩散。
1902年美国F.G.科特雷耳根据扩散定律和拉普拉斯变换,对一个平面电极上的线性扩散作了数学推导,得到科特雷耳方程:
式中i1为极限电流;F为法拉第常数;n为电极反应的电子转移数;A为电极面积;c0为活性物在溶液中的初始摩尔浓度;D为活性物的扩散系数;t为电解时间。
当时间趋向于无穷大,电流就趋近于零,这是因为电极表面活性物的浓度由于电解而逐渐减小的结果。利用i1或i1t1/2与c0成正比的关系,可用于定量分析,但由于此法不如极谱法准确和重现性好,所以实际上很少应用。因为是一个常数,所以i1t1/2对t作图得一不随t变化的直线。
科特雷耳方程适用于扩散过程(图中曲线1),如果电极反应不可逆或伴随化学反应时,则动力电流ik随时间的变化见图中曲线2,它受反应速率常数的控制。
计时电流法常用于电化学研究,即电子转移动力学研究。近年来还有采用两次电位突跃的方法,称为双电位阶的计时电流法。第一次突然加一电位,使发生电极反应,经很短时间的电解,又跃回到原来的电位或另一电位处,此时原先的电极反应产物又转变为它的原始状态,从而可以在i-t曲线上更好地观察动力学的反应过程;并从科特雷耳方程出发,考虑反应速率,进行数学推导和作图,求出反应速率常数。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式