在△abc中,a,b,c分别为内角A,B,C的对边,a+c=4,(2-cosA)tanB/2=sinA,则ABC的面积的最大值
展开全部
a+c=4,
ac<=(a+c)^2/4=4
(2-cosA)tanB/2=sinA
2sinB/2-cosAsinB/2=sinAcosB/2
2sinB/2=sinAcosB/2+cosAsinB/2
2sinB/2=sin(2A+B)/2
2sinB/2=sin[(A+B)+A]/2
2sinB/2=sin[(180-C)+A]/2
2sinB/2=cos(A-C)/2
2cos(A+C)/2=cos(A-C)/2
2cosA/2cosC/2-2sinA/2sinC/2=cosA/2cosC/2+sinA/2sinC/2
cosA/2cosC/2=3sinA/2sinC/2
tanA/2tanC/2=1/3
tanA/2tanC/2<=(tanA/2+tanC/2)^2>=4tanA/2tanC/2
(tanA/2+tanC/2)^2>=4/3
tan(A+C)/2=(tanA/2+tanC/2)/[1-tanA/2tanC/2]=
tanA/2+tanC/2=tan(A+C)/2[1-tanA/2tanC/2
tan(A+C)/2[1-tanA/2tanC/2>=2√3/3
tan(A+C)/2*(1-1/3)>=2√3/3
tan(A+C)/2>=√3
tanB/2<=√3/3
0<B<=π/3
S=1/2acsinB<=1/2*4*√3/2=√3
SABC的面积的最大值=√3
ac<=(a+c)^2/4=4
(2-cosA)tanB/2=sinA
2sinB/2-cosAsinB/2=sinAcosB/2
2sinB/2=sinAcosB/2+cosAsinB/2
2sinB/2=sin(2A+B)/2
2sinB/2=sin[(A+B)+A]/2
2sinB/2=sin[(180-C)+A]/2
2sinB/2=cos(A-C)/2
2cos(A+C)/2=cos(A-C)/2
2cosA/2cosC/2-2sinA/2sinC/2=cosA/2cosC/2+sinA/2sinC/2
cosA/2cosC/2=3sinA/2sinC/2
tanA/2tanC/2=1/3
tanA/2tanC/2<=(tanA/2+tanC/2)^2>=4tanA/2tanC/2
(tanA/2+tanC/2)^2>=4/3
tan(A+C)/2=(tanA/2+tanC/2)/[1-tanA/2tanC/2]=
tanA/2+tanC/2=tan(A+C)/2[1-tanA/2tanC/2
tan(A+C)/2[1-tanA/2tanC/2>=2√3/3
tan(A+C)/2*(1-1/3)>=2√3/3
tan(A+C)/2>=√3
tanB/2<=√3/3
0<B<=π/3
S=1/2acsinB<=1/2*4*√3/2=√3
SABC的面积的最大值=√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询