怎么判断极限是否存在
1个回答
展开全部
怎么判断极限是否存在
判断极限是否存在的方法是:分别考虑左右极限。
极限存在的充分必要条件是左右极限都存在且相等。
用数学表达式表示为:
极限不存在的条件:
1、当左极限与右极限其中之一不存在或者两个都不存在;
2、左极限与右极限都存在,但是不相等。
扩展资料
求具体数列的极限,可以参考以下几种方法:
1、利用单调有界必收敛准则求数列极限
首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。
2、利用函数极限求数列极限
如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。
3、求N项和或项积数列的极限,主要有以下几种方法:
利用特殊级数求和法
如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。
利用幂级数求和法
若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。
利用定积分定义求极限
若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。
利用夹逼定理求极限
若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。
求N项数列的积的极限
一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。
参考资料来源:百度百科-函数极限
极限不存在三种情况
极限不存在有三种情况:1.极限为无穷,很好理解,明显与极限存在定义相违。2.左右极限不相等,例如分段函数。3.没有确定的函数值,例如lim从0到无穷。
极限不存在
①极限为无穷大时,极限不存在。
②左右极限不相等。
极限存在与否的判断
1、结果若是无穷小,无穷小就用0代入,0也是极限。
2、若是分子的极限是无穷小,分母的极限不是无穷小,答案就是0,整体的极限存在。
3、如果分子的极限不是无穷小,而分母的极限是无穷小,答案不是正无穷大,就是负无穷大,整体的极限不存在。
4、若分子分母各自的极限都是无穷小,那就必须用罗毕达方法确定最后的结果。
极限的存在准则
有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。
1.夹逼定理:当x∈U时,有g≤f≤h成立
g—Xo=A,h—Xo=A,那么,f极限存在,且等于A。不但能证明极限存在,还可以求极限,主要用放缩法。
2.单调有界准则:单调增加有上界的数列必定收敛。
在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数,并且要满足极限是趋于同一方向,从而证明或求得函数的极限值。
3.柯西准则
数列收敛的充分必要条件是任给ε0,存在N,使得当nN,mN时,都有|am-an|ε成立。
极限存在的三个必要条件
极限存在的充要条件:左极限存在,右极限存在,左右极限相等。可以概括为左右极都限存在且相等。
左极限,就是从这个点的左边无穷趋向于这个数时,整个函数趋向于某个特定的数;右极限则是从这个点的右边无穷趋向于它时的极限。
极限存在的充要条件是左右极限存在且相等。
左极限就是函数从一个点的左侧无限靠近该点时所取到的极限值,且误差可以小到我们任意指定的程度,只需要变量从坐标充分靠近于该点。
右极限就是函数从一个点的右侧无限靠近该点时所取到的极限值,且误差可以小到我们任意指定的程度,只需要变量从坐标充分靠近于该点。
左极限与右极限只要有其中有一个极限不存在,则函数在该点极限不存在。
极限是否存在的条件
极限存在的条件有:
1、单调有界准则。函数在某一点极限存在的充要条件是函数左极限和右极限在某点都存在且相等。如果左右极限不相同、或者不存在。则函数在该点极限不存在。即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。
2、夹逼准则,如能找到比目标版数列或者函数权大而有极限的数列或函数,并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值;
2、利用恒等变形消去零因子;
3、利用无穷大与无穷小的关系求极限;
4、利用无穷小的性质求极限;
5、利用等价无穷小替换求极限,可以将原式化简计算;
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限;
7、利用两个重要极限公式求极限。
极限在日常生活中的应用
经济数学随着经济的发展,其地位越来越高,而掌握极限思想是学习高等数学的的基础,在现代学科教育中,极限思想的地位越来越突出,其为高等数学的应用与发展奠定着基础,但是在众多的高职高专的学生眼中高等数学的应用价值并不高,在现实生活中的应用高等数学的情况比较的少,所以他们对于极限思想的应用并不了解,基于此,本文就主要研究了极限思想在经济生活中的应用。
一、极限思想的起源与发展
早在中国古代就有
二、极限在经济生活中的应用及分析
为了提高高职高专的学生对于极限思想的理解,所以接下来本文将采用案例分析的方式,来对生活中体现的极限思想进行说明。
1.遗产分割
有一个农夫在死之前将其十九头牛作为遗产,将其按照二分之一、四分之一以及五分之一的比例,依次分给老大、老二以及老三,但是遗嘱中明确说明不能将牛宰杀或者是变卖。为了将农夫的遗产按照其遗嘱那样分配,兄弟三人无从下手,后得邻居点拨,通过借一只牛的方式实现了农夫的遗产分割,最后兄弟三人分别获得了十头、五头、四头。这一处理方式体现了极限思想在生活中的应用。按照农夫的遗嘱,兄弟三人若不借牛,就会一直在分割牛,因为其分割的比例之和并不等于1,只有二十分之十九,若没有极限思想,这个难题将无法解决。按照一般的算法,假设需要分n次才能够分清,则计算的过程如下,n-1大于等于0:
老大获得牛数=
老二获得牛数=
老三获得牛数=
按照这种计算的方式,无论最后分多少次,还是会剩下牛,所以通过这样计算就没办法完成农夫的遗愿,但是若是运用极限的思想,就会发现上述的式子是一个收敛的无穷级数,而收敛的无穷级数的和=limx→x0=,根据这个公式来算,得到的结果与向邻居借一只牛得到的结果一致。这个例子说明,极限思想具有解决生活难题的重要作用。
2.垃圾处理问题
随着经济的不断发展以及人们生活水平的不断提高,生活垃圾、工业垃圾也在不断的增加,目前在保护环境的号召下,要科学的处理垃圾仍然是一个问题,要以怎样的速度进行垃圾处理是现在主要解决的问题,极限思想对于垃圾处理速度的计算具有重要意义。
以某市的垃圾处理为例,根据某市2016年的统计资料,截止2016年年底,该市的垃圾已经达到了一百万吨,并且根据估计,从2017年开始该市每年预计会产生将近五万吨的垃圾,且每一年处理垃圾的时候都会处理到上年剩下的垃圾的百分之二十,假设2017年以后,该市每年的垃圾产量为x1、x2、x3..xn,那么可以得出:
根据极限和数列的相关内容可以计算出limn→∞an=25
通过计算可以知道,该市这样的处理速度,并不能够将垃圾及时的处理完,且剩余的垃圾会一直保持在25万吨。而该市就可以在制定相关政策或者措施之前,通过计算来探讨其政策或者措施实施的科学与否。
三、结语
通过以上的研究可以发现的是,极限思想并不只是出现在高等数学中,其与我们的生活有着密切的关系,运用极限思想可以解决生活中的难题。基于此高职高专的学生就应该转变学习态度,积极努力的学习如何利用极限思想解题。作为一名高中生,我已经感受到了极限思想对于经济生活的影响,所为了能够准确地掌握和运用极限思想,通过以下四个方面的内容来提升自己的学习能力,即通过掌握数学概念、方法等内容来夯实基础、运用数学知识解决实际问题的能力、创新能力等等。要明确任何知识都有其存在的必然性,掌握知识学生的天职,也只有真正掌握知识之后才能够在经济生活中运用到相应的数学思想。高职高专学生最初在理解极限思想的时候会有障碍,这个时候就需要学生与老师共同努力,学生要努力学习,而老师就要使得课程教学变得生动有趣,只有这样才能够实现提高高职高专学生学好经济数学的目的,从而促进高职高专学生利用经济数学思想解决问题的能力。
详情
-
官方服务
- 预约搬家
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询