求下列题目答案 30
1个回答
展开全部
lim [(1+ax²)^⅓ -1]/(cosx-1)
x→0
=lim [(1+ax²)^⅓ -1][(1+ax²)^⅔+(1+ax²)^⅓ +1]/(-½x²)[(1+ax²)^⅔+(1+ax²)^⅓ +1]
x→0
=lim [(1+ax²)-1]/(-½x²)[(1+ax²)^⅔+(1+ax²)^⅓ +1]
x→0
=lim (-2a)/[(1+ax²)^⅔+(1+ax²)^⅓ +1]
x→0
=(-2a)/[(1+0)^⅔+(1+0)^⅓ +1]
=(-2a)/(1+1+1)
=-⅔a
(1+ax²)^⅓ -1与cosx-1的等价无穷小,
lim [(1+ax²)^⅓ -1]/(cosx-1)=1
x→0
-⅔a=1
a=-1.5
a的值为-1.5
lim [(n²+2)/n +kn]=0
n→∞
lim [(k+1)n²+2)]/n=0
n→∞
lim [(k+1)n+ 2/n]=0
n→∞
k+1=0
k=-1
k的值为-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询