为什么A伴随矩阵的秩小于等于1呀 10

 我来答
休闲娱乐chl
高粉答主

2019-08-08 · 每个回答都超有意思的
知道大有可为答主
回答量:5627
采纳率:100%
帮助的人:154万
展开全部

根据A与其伴随矩阵A*秩之间的关系知

秩(A)=2

即有a+2b=0或a=b,

但当a=b时

秩(A)=1≠2,

从而必有 a≠b且a+2b=0.

扩展资料

线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念  。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵不存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。

桂望亭库昭
2019-09-30 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:27%
帮助的人:1012万
展开全部
你好!可用矩阵与伴随矩阵的性质证明,过程如图。经济数学团队帮你解答,请及时采纳。谢谢!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
勤恳且温文尔雅的小海鸥N
推荐于2017-11-25 · TA获得超过3514个赞
知道小有建树答主
回答量:2126
采纳率:83%
帮助的人:226万
展开全部
结论:r(A) ===> r(A*)=n
r(A)=n-1 ===> r(A*)=1
r(A) r(A*)=0
利用等式A·A* = |A|·E_n (n阶单位矩阵)即可得第一个关系.
当r(A)<n,有|A|=0,于是:
若r(A)小于n-1,则每个n-1阶子阵的行列式为0,从而由A*的定义知A*=0;
若r(A)等于n-1,则由A·A* = |A|·E_n知,A·A* = 0.但是由不等式
r(AB) ≥ r(A) + r(B) - n
知,
0 = r(A·A*) ≥ r(A) + r(A*) - n = n-1 + r(A*) -n = r(A*) -1
即r(A*) ≤ 1.但是A至少有一个n-1阶子阵的行列式不为0,于是由A*的定义知r(A*) = 1
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式