用牛顿莱布尼茨公式计算下列定积分
1个回答
展开全部
(6)原式=∫(0,π) |sinx-cosx|dx
=√2*∫(0,π) |sin(x-π/4)|dx
=-√2*∫(0,π/4) sin(x-π/4)dx+√2*∫(π/4,π) sin(x-π/4)dx
=√2*cos(x-π/4)|(0,π/4)-√2*cos(x-π/4)|(π/4,π)
=√2-1-(-1-√2)
=2√2
(8)原式=∫(-2,-1)x^4dx+∫(-1,1)dx+∫(1,3)x^4dx
=(1/5)*x^5|(-2,-1)+x|(-1,1)+(1/5)*x^5|(1,3)
=-1/5+32/5+1+1+243/5-1/5
=283/5
(10)原式=√2*∫(0,π/2) |sin(x-π/4)|dx
令t=x-π/4
原式=√2*∫(-π/4,π/4) |sint|dt
=2√2*∫(0,π/4) sintdt
=2√2*(-cost)|(0,π/4)
=2√2*(-√2/2+1)
=2√2-2
=√2*∫(0,π) |sin(x-π/4)|dx
=-√2*∫(0,π/4) sin(x-π/4)dx+√2*∫(π/4,π) sin(x-π/4)dx
=√2*cos(x-π/4)|(0,π/4)-√2*cos(x-π/4)|(π/4,π)
=√2-1-(-1-√2)
=2√2
(8)原式=∫(-2,-1)x^4dx+∫(-1,1)dx+∫(1,3)x^4dx
=(1/5)*x^5|(-2,-1)+x|(-1,1)+(1/5)*x^5|(1,3)
=-1/5+32/5+1+1+243/5-1/5
=283/5
(10)原式=√2*∫(0,π/2) |sin(x-π/4)|dx
令t=x-π/4
原式=√2*∫(-π/4,π/4) |sint|dt
=2√2*∫(0,π/4) sintdt
=2√2*(-cost)|(0,π/4)
=2√2*(-√2/2+1)
=2√2-2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询