循环小数分为哪几种
循环小数分为无限循环小数和无限不循环小数。
无限循环小数:
循环小数(circulating decimal),是指一个数的小数部分从某一位起,一个或几个数字依次重复出现的无限小数。循环小数会有循环节(循环点),并且可以化为分数。
两个整数相除,如果得不到整数商,会有两种情况:一种,得到有限小数;另一种,得到无限小数。循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。
从小数点后某一位开始依次不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如2.1666...*(混循环小数),35.232323...(循环小数),20.333333…(循环小数)等,其中依次循环不断重复出现的数字叫循环节。
无限不循环小数:
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。
常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。可以看出,无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。