已知星形线的参数方程怎么用积分求面积

 我来答
教育小百科达人
2019-05-08 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:475万
展开全部

由对称性

S=4∫(0→a)ydx

=4∫(π/2→0) a(sint)^3 d[a(cost)^3]

=12a^2×∫(0→π/2) (sint)^4×(cost)^2 dt

=12a^2×∫(0→π/2) [(sint)^4-(sint)^6] dt

=12a^2×[3/4×1/2×π/2-5/6×3/4×1/2×π/2]

=(3πa^2)/8

若让一个半径为1/4的圆在一个半径为1的圆内部,延著圆的圆周旋转,小圆圆周上的任一点形成的轨迹即为星形线

扩展资料:

在实数平面上有四个尖瓣的奇点,分别是星形线的四个顶点,在无限远处还有二个复数的尖瓣的奇点,四个重根的复数奇点,因此星形线共有十个奇点。

若星形线上某一点切线为T,则其斜率为tan(p),其中p为极坐标中的参数。相应的切线方程为T: x*sin(p)+y*cos(p)=a*sin(2p)/2 。

如果切线T分别交x、y轴于点x(X,0)、y(0,Y),则线段xy恒为常数,且为a。

星形线是由半径为a/4的圆在半径为a的内侧转动形成的。

参考资料来源:百度百科——星形线

茹翊神谕者

2023-06-29 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1625万
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
本九小0r
2016-12-18 · TA获得超过2410个赞
知道大有可为答主
回答量:2258
采纳率:0%
帮助的人:176万
展开全部
由对称性,
S=4∫(0→a)ydx
=4∫(π/2→0) a(sint)^3 d[a(cost)^3]
=12a^2×∫(0→π/2) (sint)^4×(cost)^2 dt
=12a^2×∫(0→π/2) [(sint)^4-(sint)^6] dt
=12a^2×[3/4×1/2×π/2-5/6×3/4×1/2×π/2]
=(3πa^2)/8
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式