x→+∞时, x^1/ x=多少?
1个回答
展开全部
lim(x→+∞)(x^(1/x))
=lim(x→+∞)(e^(ln(x^(1/x)))
=e^(lim(x→+∞)(ln(x^(1/x)))
=e^(lim(x→+∞)((lnx)/x))
而lim(x→+∞)((lnx)/x)是∞/∞类型,分子分母分别求导数得到lnx的导数是1/x,x的导数是1
所以lim(x→+∞)((lnx)/x)=lim(x→+∞)((1/x)/1)=lim(x→+∞)(1/x)=0
所以lim(x→+∞)(x^(1/x))==e^(lim(x→+∞)((lnx)/x))=e^0=1
=lim(x→+∞)(e^(ln(x^(1/x)))
=e^(lim(x→+∞)(ln(x^(1/x)))
=e^(lim(x→+∞)((lnx)/x))
而lim(x→+∞)((lnx)/x)是∞/∞类型,分子分母分别求导数得到lnx的导数是1/x,x的导数是1
所以lim(x→+∞)((lnx)/x)=lim(x→+∞)((1/x)/1)=lim(x→+∞)(1/x)=0
所以lim(x→+∞)(x^(1/x))==e^(lim(x→+∞)((lnx)/x))=e^0=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询