伯努利方程化成一阶线性微分方程是什么样子

 我来答
wjl371116
推荐于2018-03-13 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67437

向TA提问 私信TA
展开全部
形如dy/dx+Py=Qyⁿ; (n≠0,1; P、Q均为x的函数)谓之柏努利方程。
柏努利方程是非线性方程。但利用变换 z=y^(1-n)可以化为线性方程。
用yⁿ除原方程的两边得:y^(-n)(dy/dx)+Py^(1-n)=Q;
因为d[y^(1-n)]/dx=(1-n)y^(-n)(dy/dx),所以上式可写为:
[1/(1-n)][dy^(1-n)/dx+Py^(1-n)=Q
令z=y^(1-n),即可得一线性方程:
dz/dx+(1-n)Pz=(1-n)Q.
求得这线性方程的通解后,再用y^(1-n)代替z,便得柏努利方程的通解。
帐号已注销
2016-12-29 · TA获得超过637个赞
知道小有建树答主
回答量:1014
采纳率:62%
帮助的人:132万
展开全部
伯努利方程为
dy/dx+p(x)*y=q(x)y^n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式