方程两边同时对x求导什么意思,比如这个式子如何两边同时对x求导?
如果变量x和y满足一个方程F(x,y)=0,在一定条件下,当x取某区间内的任一值时,相应地总有满足这个方程的唯一的y值(不一定唯一,如x^2+y^2=1)存在,那么就说方程F(x,y)=0在该区间内确定了一个隐函数。
求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
在经济活动中会大量涉及此类函数,注意到它很特别。既不是指数函数又不是幂函数,它的幂底和指数上都有自变量x,所以不能用初等函数的微分法处理了。这里介绍一个专门解决此类函数的方法,对数求导法。
常用导数公式:
1、y=c(c为常数) y'=0
2、y=x^n y'=nx^(n-1)
3、y=a^x y'=a^xlna,y=e^x y'=e^x
4、y=logax y'=logae/x,y=lnx y'=1/x
5、y=sinx y'=cosx
6、y=cosx y'=-sinx
7、y=tanx y'=1/cos^2x
8、y=cotx y'=-1/sin^2x
9、y=arcsinx y'=1/√1-x^2
2024-12-27 广告
如果变量x和y满足一个方程F(x,y)=0,在一定条件下,当x取某区间内的任一值时,相应地总有满足这个方程的唯一的y值(不一定唯一,如x^2+y^2=1)存在,那么就说方程F(x,y)=0在该区间内确定了一个隐函数。
扩展资料:
求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
在经济活动中会大量涉及此类函数,注意到它很特别。既不是指数函数又不是幂函数,它的幂底和指数上都有自变量x,所以不能用初等函数的微分法处理了。这里介绍一个专门解决此类函数的方法,对数求导法。
参考资料来源:百度百科-求导