已知函数fx=e^x(x^2+ax+a),若a<0,关于x的不等式fx≤e^a在【a,正无穷)上有解,求实数a的取值范围?
1个回答
展开全部
f'(x)=e^x*[x^2+(a+2)x+2a]
=e^x*(x+2)(x+a),
a=-2时f'(x)=e^2*(x+2)^2>=0,f(x)是增函数;
a<x<-2或-2<x<a时f'(x)<0,f(x)是减函数,其他,f(x)是增函数。
∴a>=-2时f(x)在[a,+∞)上是增函数,f(x)<=e^a在[a,+∞)上有解,
<==>f(a)<=e^a,
<==>2a^2+a-1<=0,
解得-1<=a<=1/2,已知a<0,
故-1<=a<0.
a<-2时f(x)<=e^a,
<==>f(-2)=e^(-2)*(4-a)<=e^a,
取对数得-2+ln(4-a)<=a,
∴0<ln(4-a)<=a+2<0,矛盾。
综上,-1<=a<0,为所求。
=e^x*(x+2)(x+a),
a=-2时f'(x)=e^2*(x+2)^2>=0,f(x)是增函数;
a<x<-2或-2<x<a时f'(x)<0,f(x)是减函数,其他,f(x)是增函数。
∴a>=-2时f(x)在[a,+∞)上是增函数,f(x)<=e^a在[a,+∞)上有解,
<==>f(a)<=e^a,
<==>2a^2+a-1<=0,
解得-1<=a<=1/2,已知a<0,
故-1<=a<0.
a<-2时f(x)<=e^a,
<==>f(-2)=e^(-2)*(4-a)<=e^a,
取对数得-2+ln(4-a)<=a,
∴0<ln(4-a)<=a+2<0,矛盾。
综上,-1<=a<0,为所求。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询