x≠0,y≠0 : f(xy)= f(x) +f(y)
f'(1) exists
solution:
x=y=1
=> f(1) = 0
f'(1) =lim(h->0) [f(h+1) -f(1) ]/h
=lim(h->0) f(h+1) /h
=> f(h+1) 和 h 是同价无穷小
h->0, f(h+1) ~ ah ( a 是一个常数)
x≠0
f'(x)
=lim(h->0) [f(x+h) -f(x) ]/h
=lim(h->0) [f[x(1+ h/x)] -f(x) ]/h
=lim(h->0) [f(x) + f(1+ h/x) -f(x) ]/h
=lim(h->0) f(1+ h/x) /h
=lim(h->0) a(h/x) /h
=a/x